Hot Water Extraction Optimization of Dandelion Leaves to Increase Antioxidant Activity

항산화 활성 증진을 위한 민들레 잎의 열수추출 조건의 최적화

  • Published : 2008.06.30

Abstract

This study used response surface methodology (RSM) in an effort to optimize the hot water extraction conditions of dandelion leaves in order to increase antioxidant activity in the extract. A central composite design was applied to investigate the effects of independent variables, which included the ratio of solvent to sample ($X_1$), extraction temperature ($X_2$), and extraction time ($X_3$), on dependent variables of the extracts, including soluble solid ($Y_1$), total polyphenols ($Y_2$), total flavonoid ($Y_3$), 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging ability ($Y_4$), 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging ability ($Y_5$), and superoxide radical scavenging ability ($Y_6$). The estimated optimal conditions were as follows: $83.77{\pm}1.07^{\circ}C$ of the extraction temperature, $20.85{\pm}0.24 mL/g$ of solvent per sample, and $1.59{\pm}0.12$ hr of extraction time. At the optimal conditions, the predicted characteristic values were: a yield of 38.98%, a total polyphenol level of $74.28{\mu}g/mg$, a total flavonoid level of $74.00{\mu}g/mg$, a DPPH radical scavenging ability ($IC_{50}$) of 0.14 mg/mL, a ABTS radical scavenging ability ($IC_{50}$) of 3.24 mg/mL, and a superoxide radical scavenging ability ($IC_{50}$) of 2.49 mg/mL.

민들레 잎의 열수 추출물의 항산화 활성 증진을 위한 추출조건을 최적화하기 위하여 반응표면분석법을 사용하였다. 중심합성 계획에 따라 추출조건의 독립변수(추출온도, 용매비, 추출시간)와 이에 따라 영향을 받는 종속변수(수율, 총 폴리페놀 함량, 총 플라보노이드 함량, DPPH 라디칼 소거활성, ABTS 라디칼 소거활성, superoxide 라디칼 소거활성)를 설정하였다. 추출물의 수율은 추출시간에 의해 거의 영향을 받지 않는 것으로 나타났으며 시료의 용매비가 증가할수록 감소하였고, $70^{\circ}C$ 이상의 추출온도에서 감소하는 것으로 나타났다. 총 폴리페놀과 총 플라보노이드 함량은 추출온도가 증가함에 따라 크게 증가하였으며, DPPH 라디칼, ABTS 라디칼, superoxide 라디칼 소거활성도 추출온도에 가장 크게 영향을 받아 추출온도가 증가함에 따라 증가하다가 최적온도 이후에 약간 감소하는 것으로 나타났다. 이들 추출물의 특성을 모두 만족시키는 최적 추출조건은 추출 온도 83.77$\pm$1.07$^{\circ}C$, 시료에 대한 용매비 20.85$\pm$0.24 mL/g, 추출시간 1.59$\pm$0.12 hr이었고 이 때 예측된 수율은 38.98%, 총 폴리페놀 함량은 74.28 ${\mu}g$/mg, 총 플라보노이드 함량은 74.00 ${\mu}g$/mg이었으며, DPPH 라디칼, ABTS 라디칼, superoxide 라디칼의 소거활성($IC_{50}$)의 예측 특성값은 각각 0.14 mg/mL, 3.24 mg/mL, 2.49 mg/mL로 나타났다.

Keywords

References

  1. Videla LA, Fermandez V. Biochemical aspects of cellular oxidative stress. Arch. Biol. Med. Exp. 21: 85-92 (1988)
  2. Halliwell B, Aruoma OJ. DNA damage by oxygen-derived species. FEBS Lett. 281: 9-19 (1991) https://doi.org/10.1016/0014-5793(91)80347-6
  3. Jennings PE, Barnett AH. New approaches to the pathogenesis and treatment of diabetic microangiopathy. Diabetic Med. 5: 111-117 (1988) https://doi.org/10.1111/j.1464-5491.1988.tb00955.x
  4. Fridovich I. Superoxide dismutase an adaption to paramagnetic gas. J. Biol. Chem. 264: 7761-7762 (1989)
  5. Branen AL. Toxicology and biochemistry of butylated hydroxyanisole and butylated hydroxytoluene. J. Am. Oil Chem. Soc. 52: 59-63 (1975) https://doi.org/10.1007/BF02901825
  6. Jorge M, Ricardo DS, Jacques R, Vernonique C, Anni C, Michel M. Procyanidin dimers and trimers from grape seeds. Phytochemistry 30: 1259-1264 (1991) https://doi.org/10.1016/S0031-9422(00)95213-0
  7. Kim TJ. Our Flower, 100 Species 9th ed. Hyunamsa, Seoul, Korea. pp. 2-5 (1994)
  8. Kang MJ, Kim KS. Current trends of research and biological activities of dandelion. Food Ind. Nutr. 6: 60-67 (2001)
  9. Williams CA, Goldstone F, Greenham J. Flavonoids, cinnamic acids and coumarins from the different tissues and medicinal preparations of Taraxacum officinale. Phytochemistry 42: 121-127 (1996) https://doi.org/10.1016/0031-9422(95)00865-9
  10. Choi U, Shin DH, Chang YS, Shin JL. Screening of natural antioxidant from plant and their antioxidative effect. Korean J. Food Sci. Technol. 24: 142-148 (1992)
  11. Kang MJ. Antioxidant activity and free radical scavenging effect of dandelion extract. PhD thesis, Yeungnam University, Kyungsan, Korea (2001)
  12. Gontard N, Guilbert S, Cuq JL. Edible wheat gluten films: Influence of the main process variables on film properties using response surface methodology. J. Food Sci. 57: 190-196 (1992) https://doi.org/10.1111/j.1365-2621.1992.tb05453.x
  13. Lee GD, Lee JE, Kwon JH. Application of response surface meghodology in food industry. Food Ind. 33: 33-45 (2000)
  14. Singleton V, Rossi J. Colorimetry of total phenolics with phosphomolybdic- phosphotungstic acid reagents. Am. J. Enol. Viticult. 16: 144-158 (1965)
  15. Jia M, Tang M, Wu J. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 64: 555-559 (1999) https://doi.org/10.1016/S0308-8146(98)00102-2
  16. Hatano T, Kagawa H, Yasuhara T, Okuda T. Two new flavonoids and other constituents in licorice root: Their relative astringency and radical scavenging effects. Chem. Pharm. Bull. 36: 1090-1097 (1988)
  17. Miller N, Rice-Evans C. Factors influencing the antioxidant activity determined by the ABTS radical cation assay. Free Radical Res. 26: 195-199 (1997) https://doi.org/10.3109/10715769709097799
  18. Richmond R, Halliwell B, Chauhan J, Darbre A. Superoxidedependent formation of hydroxyl radicals: Detection of hydroxyl radicals by the hydroxylation of aromatic compound. Anal. Biochem. 118: 328-330 (1981) https://doi.org/10.1016/0003-2697(81)90590-X
  19. Kim SH, Kim IH, Kang BH, Lee SH, Lee JM. Optimization of ethanol extraction conditions for effective components from Gastrodia elata Blume. Korean J. Food Preserv. 13: 506-512 (2006)
  20. Kang MJ, Shin SR, Kim KS. Antioxidative and free radical scavenging activity of water extract from Dandelion (Taraxacum officinale). Korean J. Food Preserv. 9: 253-259 (2002)
  21. Choi MA, Park NY, Jeong YJ. Optimization of hot water extraction conditions from Hericium erinaceus. J. Korean Soc. Food Sci. Nutr. 33: 1068-1073 (2004) https://doi.org/10.3746/jkfn.2004.33.6.1068