DOI QR코드

DOI QR Code

Expression and Cloning of Microbial Transglutaminase in S. cerevisiae

세균 유래 단백질연결효소 Transglutaminase의 클로닝과 효모에서의 발현

  • Kim, Hyoun-Young (Institute of Basic and Natural Science, Woosuk University) ;
  • Oh, Dong-Soon (Department of Pharmaceutical Engineering, Woosuk University) ;
  • Kim, Jong-Hwa (Department of Pharmaceutical Engineering, Woosuk University)
  • 김현영 (우석대학교 기초과학연구소) ;
  • 오동순 (우석대학교 제약공학과) ;
  • 김종화 (우석대학교 제약공학과)
  • Published : 2008.06.30

Abstract

A $Ca^{2+}-independent$ microbial transglutaminase (mTGase) from the actinomycete Streptomyces mobaraensis IFO13819 is a useful enzyme in the food industry. It is consists 406 amino acid residues, which comprised leader and pro region of 75 amino acid residues and the structure region of 331 amino acid residues. Pro and structure gene of TGase were cloned into the yeast shuttle vector pYAEG-TER and then used to transform Saccharomyces cerevisiae 2805. Expression of mTGase in recombinant was confirmed with Northern hybridization and the maximal activity of TGase was shown 26 mU/ml.

방선균 Streptomyces mobaraensis IFO13819 유래 transglutaminase(mTGase)는 칼슘 비의존성으로 식품산업에서 유용하게 이용되고 있는 효소이다. mTGase는 406개의 아미노산으로 구성되어 있는데 leader와 pro 부위는 75개, 구조 부위는 331개의 아미노산으로 구성되어있다. mTGase의 pro와 구조 유전지를 pYAEG-TER 벡터에 클로닝하고 Saccharomyces cerevisiae 2805에 형질전환하였다. 형질전환체에서 mTGase의 발현을 Northern hybridization을 통해 확인하였으며, 최대 26 mU/ml의 mTGase의 활성을 측정할 수 있었다.

Keywords

References

  1. Ando, H., Adachi, M., Umeda, K., Matsuura, A., Nonaka, M., Uchio, R., Tanaka, H. and Motoki, M. 1989. Purification and characteristics of a novel transglutaminase derived from microorganisms. Agric. Biol. Chem. 53:2613-2617 https://doi.org/10.1271/bbb1961.53.2613
  2. Anfinsen, L. B. 1973. Principle that govern the folding of protein chains. Science 1811:223-230
  3. Cozzolino, A., Di Pierro, P., Mariniello, L., Sorrentino, A., Masi, P. and Porta, R. 2003. Incorporation of whey proteins into cheese curd by using transglutaminase. Biotechnol. Appl. Biochem. 38:289-295 https://doi.org/10.1042/BA20030102
  4. Cross, A. J. and Sizer, I. W. 1959. Oxidation of triamine, tyrosine, and related compounds by peroxidase. J. Biol. Chem. 234: 1611-1614
  5. Folk, J. E. 1980. Transglutaminase. Annu. Rev. Biochem. 49:517-531 https://doi.org/10.1146/annurev.bi.49.070180.002505
  6. Iceson, I. and Apelbaum, A. 1987. Evidence for transglutaminase activity in plant tissue. Plant Physiol. 84:972-974 https://doi.org/10.1104/pp.84.4.972
  7. Ikurak, S. R. and Mokito, M. 1992. Use of transglutaminase in quality-improvement and processing of food proteins. Commenta. Agric. Food Chem. 2:389-407
  8. Kim, C. H., Kim, H. S. and Kang, Y. J. 1992. The hydrolysis conditions of rapeseed protein by proteinase. J. Korean Soc. Food Nutr. 25:513-518
  9. Kim, H.-S., Lee, D. H., Ryu, E. J., Uhm, T.-B., Yang, M.-S., Kim, J. B. and Chae, K. S. 1999. Expression of the inu2 gene for an endoinulinase of Aspergillus ficumm in Saccharomyces cerevisiae. Biotech. Letters 21:621-623 https://doi.org/10.1023/A:1005567403830
  10. Kim, H.-E., Rui, Q. and Chae, K.-S. 2005. Increased production of exoinulinase in Saccharomyces cerevisiae by expressing the Kluyveromyces marxianus INU1 gene under the control of the INU1 promoter. Kor. J. Microbiol. Biotechnol. 15:447-450
  11. Kim, H. S. and Kang, Y. J. 1995. Deamination on glutaminyl and asparaginyl residues of protein by Neutrase. Kor. J. Food Sci. Tech. 27:794-798
  12. Fork, J. E. and Cole, P. W. 1986. Strucutual requirement of specific substrate for guinea pig liver transglutaminase. J. Biol. Chem. 240:2951-2960
  13. Kuraishi, C. and Soeda, T. (eds.) American Chemical Society, Washington, DC, USA
  14. Kurth, L. and Rogeners, P. J. 1984. Transglutaminase catalyzed crosslinking of myosin to soya protein, casein, and gluten. J. Food Sci. 49:573-576 https://doi.org/10.1111/j.1365-2621.1984.tb12471.x
  15. Lee, H. G., Chung, M. S. and Choi, Y. J. 1995. A review on application of transglutaminase for animal food products. Kor. J. Sci. 15:252-256
  16. Lou, M. F. 1975. Isolation and identification of L-aspartyl-Llysine and L-$\epsilon$-glutamyl-L-ornithinefrom nomal human urine. Biochemistry 14:3503-3508 https://doi.org/10.1021/bi00686a033
  17. Motoki, M. and Seguro, K. 1996. Characteristics of microbial transglutaminase and its application on food. Proceedings of the international symposium on recent advances in bioindustry, pp. 79-86
  18. Motoki, M. and Seguro, K. 1998. Transglutaminase and its use for food processing. Food Sci. Technol. 9:204-210 https://doi.org/10.1016/S0924-2244(98)00038-7
  19. Motoki, M., Nio, N. and Takinami, K. 1984. Functional properties of food protein polymerized by transglutaminase. Agric. Biol. Chem. 48:1257-1261 https://doi.org/10.1271/bbb1961.48.1257
  20. Park, E.-H., Shin, Y.-M., Lim, Y.-M., Kwon, T.-H., Kim, D.-H. and Yang, M. S. 2000. Expression of glucose oxidase by using recombinant yeast. J. Biotech. 81:35-44 https://doi.org/10.1016/S0168-1656(00)00266-2
  21. Pisamo, J. J., Finlayson, J. S. and Peytron, M. P. 1968. Cross-link in fibrin polymerized by factor XIII $\varepsilon$-(${\gamma}$-glutamyl)lysine. Science 160:892-893 https://doi.org/10.1126/science.160.3830.892
  22. Sakamoto, H., Yamazaki, K., Kaga, C., Yamamoto, Y., ito, R. and Kurosawa, Y., 1996. Strength enhancement by addition of microbial transglutaminase during chinese noodle processing. Nippon Shokuhin Kagaku Kaishi 43:598-602 https://doi.org/10.3136/nskkk.43.598
  23. Seota, K. 1997. A study of new protein ingredient by transglutaminase. Shouhing Kougok 12:18-25
  24. Tasi, G. J., Lin, S. M. and Jiang, S. T. 1998. Transglutaminase from Streptoverticillium ladakanum and application to minced fish product. J. Food Sci. 61:1234-1238 https://doi.org/10.1111/j.1365-2621.1996.tb10968.x
  25. Whitaker, J. R. 1997. Enzymatic modification of proteins applicable to foods. pp. 99-155. In: Food proteins improvement through chemical and enzymatic modification. Ed. R. E. Feeny. American Chemical Society, Washington, DC, USA
  26. Yasueda, H., Kumazawa, Y. and Motoki, M. 1994. Purification and characterization of a tissue-type transglutaminase from red ses bream (Pagrus Major). Biosci. Biotechnol. Biochem. 58: 2041-2045 https://doi.org/10.1271/bbb.58.2041
  27. Yokoyama, K., Nakamura, N., Seguro, K. and Kubota, K. 2000. Overproduction of microbial transglutaminase in Escherichia coli, in vitro refolding, and characterization of the refolded form. Biosci. Biotechnol. Biochem. 64:1263-1270 https://doi.org/10.1271/bbb.64.1263
  28. Yokoyama, K., Nio, N. and Kikuchi, Y. 2004. Properties and applications of microbial transglutaminase. Appl. Microbiol. Biotechnol. 64:447-454 https://doi.org/10.1007/s00253-003-1539-5
  29. Yoo, J.-S., Chun, G.-T. and Jeong, Y.-S. 2003a. The effect of dissolved oxygen on microbial transglutaminase Production by Sterptoverticillium mobaraense. Kor. J. Biotechnol. 18:155-160
  30. Yoo, J.-S., Shin, W.-S., Chun, G.-T., Kim, Y.-S. and Jeong, Y.-S. 2003b. The separation of transglutaminase produced from Streptomyces mobaraensis and its application on model food system. Kor. J. Food Sci. Technol. 35:260-265

Cited by

  1. Facile Synthesis of CuO Nanoparticles from Cu(II) Schiff Base Complexes: Characterization, Antibacterial and Anticancer Activity vol.5, pp.2, 2017, https://doi.org/10.1080/23080477.2017.1328910