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Detecting cell cycle-regulated genes using
Self-Organizing Maps with statistical Phase

Synchronization (SOMPS) algorithm

Chang Sik Kim*, Hong Joon Tcha**, Cheol-Soo Bae***, Moon-Hwan Kim****

ABSTRACT

Developing computational methods for identifying cell cycle-regulated genes has been one of important

topics in systems biology. Most of previous methods consider the periodic characteristics of expression

signals to identify the cell cycle-regulated genes. However, we assume that cell cycle-regulated genes

are relatively active having relatively many interactions with each other based on the underlying cellular

network. Thus, we are motivated to apply the theory of multivariate phase synchronization to the cell

cycle expression analysis. In this study, we apply the method known as "Self-Organizing Maps with

statistical Phase Synchronization (SOMPS)", which is the combination of self-organizing map and

multivariate phase synchronization, producing several subsets of genes that are expected to have

interactions with each other in their subset (Kim, 2008). Our evaluation experiments show that the

SOMPS algorithm is able to detect cell cycle-regulated genes as much as one of recently reported

method that performs better than most existing methods

1. Introduction

Due to recent high-throughput DNA

microarray technology, cell cycle analysis using

gene expression has been considered as an

important topic in systems biology. There has

been several genome-wide DNA microarray

studies monitoring periodic pattern of expression

in Saccharomyces cerevisiae (Cho et al., 1998;

Spellman et al., 1998), human fibroblasts (Cho et

al., 2001), HeLa cells (Whitfield et al., 2002),

Schizosaccharomyces pombe (Rustici et al.,

2004), and etc. The budding yeast data sets in

particular havebeen widely used for the

development of various computational methods

for identifying periodically expressed genes (Cho

et al., 1998; Spellman et al., 1998; Johansson et

al., 2003; de Lichtenberg et al., 2005; Luan and

Li, 2004; Lu et al., 2004; Zhao et al., 2001). Most

of them have concluded the periodically

expressed subset of yeast genome to comprise

about 300-800 genes by only considering the

characteristics of periodicity in expression

signals. For instance, Spellman et al. (1998) and

de Lichtenberg et al. (2005) apply a Fourier-like

or Fourier scores to measure the periodicity of

* 숙명여자대학교 겸임교수

** 강원대학교 컴퓨터과학과 교수(tchahj@kangwon.ac.kr)

*** 관동대학교 정보통신공학과 교수(baecs@kwandong.ac.kr)

**** (주)한국전파기지국 연구소장(mhkim@krtnet.co.kr)



40   한국정보전자통신기술학회논문지 제1권 제2호

expression signals. However, we assume that

cell cycle-regulated genes are active having

relatively many interactions with each other

during cell cycle. Therefore, we are motivated to

use the theory of multivariate phase

synchronization (Allefeld and Kurths, 2004). The

basic idea of multivariate synchronization

analysis is to perceive the oscillating systems as

a cluster, in which each component system

participates in with different degree. The cluster

consists of a common rhythm (or mean field

oscillation). This mean field is not predetermined,

but comes from interactions within the cluster.

By combining self-organizing map and

multivariate phase synchronization analysis, we

apply the method knownas Self-Organizing Map

with Phase Synchronization (SOMPS) algorithm

(Kim, 2008) for identifying cell cycle-regulated

genes using cell cycle expression data.

To evaluate SOMPS, we create synthetic

expression signals that are globally coupled as

an ensemble using the Kuramoto model

(Strogatz, 2000). We provide the performance of

SOMPS as a function of noise included in

synthetic data and cutoff. We also evaluate

SOMPS using yeast data set and the

performance is compared with one of recent

methods by de Lichtenberg et al. (2005).

2. Methods

2.1 Analytic Signal and Hilbert Transform

This study focuses on the oscillating systems

containing internal source of energy, which are

transformed into oscillatory movements. The

SOMPS algorithm is basically based on the

theory of phase synchronization, which is

generally considered as the complete coincidence

of the states of individual systems (Rosenblum

et al., 1996). This can result from an interaction

between systems (Pikovsky, 1984a) as well as

from the influence of external forces (Pikovsky,

1984b). The phase of a responding arbitrary

signal x(t) from a system can be determined by

using the complex analytic signal (Gabor, 1946).

The analytic signal is a function of time and

can be defined as follows
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where i is the imaginary unit and xh(t)is the

Hilbert transform (HT) of x(t)
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in which the integration of HT is performed

in the sense of the Cauchy principal value. The

analytic signal is further decomposed in terms of

complex polar coordinates as

( ) ( ) ( )( ),exp titAtxa f-= (3)

where A(t) = |xa(t)| and (t) = arg[xa(t)].

These two functions are respectively called the

instantaneous amplitude and phase of the signal

x(t).

2.2 Bivariate Phase Synchronization

In the case with two self-sustained oscillators,

phase synchronization is defined as locking of

the phases as described as early in the 17th

century by Huygens (1673). The phase locking

between two oscillating systems is defined as

x,y =mx − ny= const., where x and y are the

phase of time series x(t) and y(t) respectively,

x,yis the generalized phase difference between

x(t) and y(t), and m and n are certain positive

numbers (Rosenblum et al., 1996). In this study,

the phase synchronization is restricted to the

case m = n = 1 and suffices are dropped for

clarity with an assumption that the oscillating

signals come from the same physiological

systems. In statistical phase synchronization, the

strength of synchronization between each two

oscillators can be measured by a static on the
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distribution of their phase difference as follows
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where n is the number of samples points on

time signals. Rx,y takes a range from 0 to 1,

describing a continuum between no and perfect

synchronization (Bhattacharya, 2001).

2.3 Multivariate Phase Synchronization

For a collection of oscillators whose elements

interacts with each other forming a certain

complex process, synchronization phenomena in

the large ensemble of oscillators is noted as

synchronization cluster, in which each oscillator

participate in different degrees (Allefeld and

Kurths, 2004). Let’s consider an ensemble of

non-identical oscillators to understand the

process of collective synchronization. From the

previous section, it is understood that a pair of

oscillators can be synchronized, and it is

excepted synchronization can be extended to a

whole population of oscillators, or at least a

large portion of it. Pikovsky et al.(2001) describe

the synchronization cluster as globally coupled

oscillators, in which each oscillator of ensemble

is driven by the mean field that is formed by all

oscillators. This mean field (or common force) is

not predetermined, but results from interactions

within the ensemble. This mean field influences

on whether the oscillators in ensemble

synchronize, but itself depends on their

oscillation. For each time measurement of all

oscillators, the phase of mean field is defined as

a circular weighted mean of all phases inside the

cluster
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where the participation index mj can be

obtained as a function of the synchronization

strength between an oscillator and the cluster as

follows,
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The partition index mj measuresboth how

close each oscillator inside the cluster follows

the mean field Φc as well as how much a

system contribute to the cluster. However, it is

not clear which function f should be chosen for

the relationship between the Rj,c and the mj. To

fill this gap, Allefeld and Kurth (2004) provide

the synchronization cluster algorithm for the

estimation of the Rj,c, provided that all of input

signals make contributions to the cluster.

2.4 Multicluster Multivariate Phase Synchronization

For a complex system consisted of multiple

separate sub-processes, it is necessary to

estimate the mean field for each ensemble of

sub-process. To do this, we applied the

self-organizing map with phase synchronization

(SOMPS) algorithm (Kim, 2008), which is the

combination of the self-organizing map algorithm

and Eq. 6. The general topology of an SOM

could be 1, 2, or 3D-network of interconnected

nodes, of which learning algorithm involved the

mapping of input vectors representing some

features onto specific nodes over the training

phase. Each node in SOMPS corresponds to the

mean field Φcrepresenting the common rhythm

or driving forces for a specific sub-process.

During training steps, each mean field Φc

evolves to be the most likely representing the

mean field of a certain cluster, which is

consisted of oscillators involved in the specific

sub-process. In each training step, one sample

phase j from input data set is randomly chosen

and the phase synchronization strength is

calculated between j and all the mean fields
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using Eq. 6. The mean field Φc that has the

strongest synchronization strength Rj,c is

selected as a "winning" mean field to be

updated, i.e. Rj,c = maxk{Rj,k}, where k is the

index of mean fields in SOMPS. After selecting

the "winning" mean field, the mean fields and its

topological neighbors are updated with following

updating rule
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where α(t) is a learning rate that depends

upon the iteration time t. The function hc(r) is

called the neighbor function. In this study, the

Gaussian neighborhood function is used
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where lc is the location of selected mean field,

lithe location of each mean field in the structure

of SOM, and r the neighborhood radius. The

training procedure continues until a specified

number of training iterations is completed. Once

SOMPS training is done, each input phase j is

assigned to its most coupled mean field, i.e. Rj,c =

maxk{Ri,k}, where k is the index of mean fields.

3. Results

3.1 In Silico Experiment

The purpose of this experiment is to show the

effectiveness of SOMPS algorithm for identifying

the signals from a certain specific process. In this

study, it is assumed that a certain group of gene

expression levels during cell cycle can be

explained as the synchronization of a large

ensemble of oscillators. It is also assume that

elements from the ensemble interacts with each

other and is driven by the mean field that is

formed by all elements, provided that each member

from the group plays a role for a certain biological

process. The mean field is not predetermined, but

arises from the interactions within the ensemble,

and this force determines whether the systems

synchronize, but itself depends on their oscillation.

To create the synthetic cell cyclic gene expression,

we use the Kuramotomodel that is originally

motivated by the phenomenon of collective

synchronization, in which an enormous system of

oscillators spontaneously locks to a common

frequency (Strogatz, 2000). This phase governing

equation that gives the long-term dynamics of

globally coupled oscillators is described as

( )å =-Y=
N

j
j
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where the is are the instantaneous phase, the

is the mean field, the positive constant C

corresponds to the coupling strength, and N the

number of genes. Note that the natural

frequencies of the individual oscillators are

excluded in this study and the mean field is

roughly estimated by averaging the phase of all

oscillators at current time points. With this model,

it is assumed the instantaneous rate of phase

change is proportional to the mean sinusoidal

coupling between the mean field and each

instantaneous phase. Given a set of random initial

condition and a step size t, we can simulate the

instantaneous phase for each gene as follows
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dt
td

ttt i
ii

f
dff +=+

To this end, the synthetic expression signal can

be created with the conversion of the simulated

instantaneous phase into real signals as follows

( ) ( )( )[ ],exp tjArealtx ii f=
where j is the imaginary unit and A the

instantaneous amplitude that is set to 1 for all

signals. Then the synthetic signals are updated by

adding random noise from the Gaussian distribution

with mean = 0 and standard deviation.
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To evaluate the SOMPS algorithm, we

generate four sets of synthetic expression

signals with four different =0.1, 0.2, 0.3, 0.4. For

each set, we generate a group of expression

signals with N = 100, 20 time points, and the

coupling strength C =3.0. For each set, we also

generate a group of random signals with the

same number of time points and N = 900 and

this random group is combined with the

synthetic expression signals. Then, we randomly

shuffle the location of all expression signals for

each set. Figure 1 shows three groups of sorted

synthetic signals with noise, a group of signals

without any noise, and random signals, in which

the change of synthetic signals is displayed as

the noise level increases from 0.0 to 0.3.

Fig. 1. Synthetic expression data by Kuramoto

model: (a)ε=0.0, (b)ε=0.1, (c)ε=0.2, (d)ε=0.3, and (d)

random data

SOMPS is trained withthese four sets of

synthetic expression signals, and each SOMPS is

trained for 500 cycles. For each SOMPS, we

create 1D-network of interconnected mean field

nodes with the size of 10 and the radius of

neighbor r = 1. Once SOMPS training is done,

each input phase i is assigned to its most

coupled mean field c. Each signal is selected

only if its phase strength with assigned mean

field is greater than predefined cutoff, i.e. Ric

cutoff. It is noteworthy that only a node among

all trained ones has a sinusoidal periodicity (Fig.

2a) and only this node contains the majority of

true positive synthetic signals, and this node is

therefore considered for the evaluation of the

performance of SOMPS.

We compute the sensitivity = TP/(TP+FN) and

the precision = TP/(TP+FP), where TP is the

number of true positives, FN the number of false

negatives, and FP the number of false positives.

Then, we systematically compare the sensitivity

and precision for different cutoff and noise level

(Table 1). To evaluate the variability of the

results, we run SOMPS 20 times for each noise

level . Note that the synthetic expression signals

are different for each run due to random

generations of initial phase signals and random

noise addition, and the initial mean fields for

trainingSOMPS are different due to random

generation. Thus, the results are expected to have

certain degree of variability. Table 1 shows that

the more noises are included in synthetic

expression, the less sensitivity are obtained by

SOMPS. On the other hand, the overall precision

is relatively less affected than sensitivity by the

noise, i.e. precision 95%. It means that at least

95% of output signals are TP signals. It is also

shown that the sensitivity is almost 100% with

cutoff = 0.7 for all noise level . If we assume that

the noise level 0.4, the cutoff value to obtain

the sensitivity 100% and the precision 95%

should be 0.7. Therefore, we conclude that the

cutoff value 0.7 could be used for the analysis of

real yeast expression data to evaluate SOMPS,

provided that the noise level in yeast data is

0.4. This could be reasonable assumption because

it is believed that = 0.4 is relatively large.

We compare the selected mean field (Fig. 2)

and three examples of output synthetic signals.

Figure 3 provides mainly two cases of

comparison: 1) the mean field and input signal

are expressed simultaneously (Fig. 2a), 2) the

mean field and input signals are expressed with
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constant time shift (Fig. 3b-c). It is noteworthy

that the conventional SOM using Euclidean

distance for training is not able to obtain these

expression signals with constant time shift

because these signals should have relatively low

linear correlation with trained mean field.

Table 1. Sensitivity and precision of SOMPS

with synthetic data.

Sensitivity Precision

Cutoff = 0.70

0.1 1.0 0.0 0.9585 1.5647e-2

0.2 1.0 0.0 0.9646 1.7658e-2

0.3 1.0 0.0 0.9554 1.8097e-2

0.4 0.9985 3.6635e-3 0.9596 2.1405e-2

Cutoff = 0.80

0.1 1.0 0.0 0.9955 5.9621e-3

0.2 1.0 0.0 0.9960 6.6902e-3

0.3 0.9995 2.2361e-3 0.9930 4.6584e-3

0.4 0.9650 2.0647e-2 0.9923 8.0159e-3

Cutoff = 0.85

0.1 1.0 0.0 0.9995 2.2139e-3

0.2 1.0 0.0 0.9995 2.2139e-3

0.3 0.9930 6.5695e-3 0.9990 3.0779e-3

0.4 0.8835 4.7824e-2 0.9966 6.3266e-3

Cutoff = 0.90

0.1 1.0 0.0 1.0 0.0

0.2 0.9995 2.2361e-3 1.0 0.0

0.3 0.9535 2.9069e-2 1.0 0.0

0.4 0.6690 6.8894e-2 1.0 0.0

Cutoff = 0.95

0.1 1.0 0.0 1.0 0.0

0.2 0.9675 4.2535e-2 1.0 0.0

0.3 0.5700 5.0990e-2 1.0 0.0

0.4 0.1935 4.7047e-2 1.0 0.0

Fig. 2. Trained mean fields of SOMPS with

synthetic expression data.

Fig. 3. Comparison of trained mean field and

three examples of output synthetic expression

signals. The dashed lines corresponds to the

trained mean field and the solid line the synthetic

expression signals.

3.2 Saccharomyces cerevisiae cell cycle 

gene expression data analysis

We evaluate SOMPS with the expression data

sets (Alpha, Cdc15, and Cdc28) from the study

of Spellman et al. (1998). We normalize the

expression signals to the standard variable, i.e.

x(t) = (z(t)-)/ where z(t) is an input expression
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signal, then the corresponding normalized

expression x(t) has the mean 0 and variance 1.

For training SOMPS in this experiment, we

create the 1D-network of nodes with the size of

20 and the radius of neighbor r = 4. Then, each

SOMPS is trained for 500 cycles. After training,

we select the mean fields that display sinusoidal

periodicity, i.e. 7 for alpha factor, 6 for cdc15,

and 6 for cdc28 data (Fig. 4), and cutoff = 0.7 is

used based on the in silico experiment.

Fig. 4. The selected mean fields after training of

SOMPS with yeast data: (a) Alpha-factor, (b)

Cdc15, (c) Cdc28.

We compare the performance of SOMPS with

one of recent methods for the identification of

cell cycle-regulated genes (de Lichtenberg et al.,

2005). They present a simple permutation-based

method that performs better than most existing

methods, in which two statistical tests for

regulation and periodicity are combined.They

calculate the standard deviations of each

log-ratio profile for the significance of regulation

and the Fourier scores for periodicity. We

benchmark the methods by measuring their

ability to identify genes from three benchmark

sets: B1) 799 genes identified as periodically

expressed by Spellman et al. (1998), B2) 352

genes identified as cell cycle-regulated by

Chromatin IP studies by Simon et al. (2001) and

Lee et al. (2002), and B3) 518 genes annotated

in MIPS (Mewes et al., 2002) as ‘cell cycle and

DNA processing’. For direct comparison between

SOMPS and permutation-based method, we

assign the rank for each expression signals

based on the phase synchronization strength

between each selected signal and its mean field.

This strength value quantifies both how close an

oscillator follows the common rhythm (or mean

field) and how important it is in its contribution

to its cluster.

Figure 5 shows the performance of each

method on each individual expression data set.

The ranked lists from both methods are plotted

as curves, showing the percentage of genes in a

benchmark set recovered as a function of rank.

Although one method is better than the other

one depending on the expression data sets or

benchmark sets, there is no absolute indication

such that one method outperforms the other.

Because the permutation-based method is proven

to be effective in identifying cell cycle-regulated

genes, the result from SOMPS also enrich for

genes previously identified as periodicity and

genes associated with known cell cycle

transcription factors.



46   한국정보전자통신기술학회논문지 제1권 제2호

Fig. 5. Comparison between SOMPS and

permutation-based method. The fraction of the

benchmark set that is identified is plotted as a

function of gene rank for each method,

experiment and benchmark set. The solid line

corresponds to SOMPS and the dashed line the

permutation-based method.

To understand the significance of cutoff value,

the P-value is estimated from the distribution of

phase synchronization strength between each

oscillator (gene) and the mean field, Ric. In

order to estimate a P-value for a given cutoff

value, we use the alpha-factor data set and a

set of random expression signals is generated by

shuffling the expression signals at different time

points by interchanging the expression signal at

time points 3 and 14. SOMPS is trained with

this random data set and the phase

synchronization strength Rics are calculated and

tabulated their distribution (Fig. 6a). This

distribution is an approximation of true negatives

for input expression signals. By integration, we

could estimate a P-value, which is defined as

the probability of obtaining a Ric larger than the

cutoff from the random distribution: the smaller

the P-value, the more significant the strength

value Ric and vice versa (Fig. 6b). For further

understanding of the significance of cutoff, we

examine one of selected mean field with

alpha-factor data (Fig. 4-a4). Experimentally

identified physical or genetic interactions are

mined from BioGRID database to visualize the

known interaction networks between genes in

Figure 7. The BioGRID is a freely accessible

database of physical or genetic interactions

available at http://www.thebiogrid.org and genes

are sorted according to the strength value Rics

in supplementary Table S1. It is shown that the

histone proteins (e.g. HTA1, HTA2, HTB1,

HTB2, HHT1, HHT2, HHF1, and HHF2) are top

ranked in Table S1. It means that the histone

proteins have significantly more contribution to

this group. It is well known that the histone

proteins are present in such enormous quantities

(about 60 million molecules of each type of

histone per cell, compared to 10,000 molecules

for a typical sequence-specific DNA binding

protein). Histones are relatively small proteins

with a very high proportion of positively

charged amino acids. The positive charge helps

the histone bind tightly to DNA, regardless of

its nucleotide sequence. They are therefore likely

to have a strong influence on any reaction that

occurs in chromosome (Albert et al., 1989). It is

also shown that genes with relatively high Ric

(e.g. histone proteins) have more known

interactions than the ones with relatively low

Ric(Fig. 7). Based on the procedure by Qian et

al. (2001), we explore the relationship between

cutoff and known physical or genetic interactions

from BioGRID(Fig. 8). The relationship can be

defined using the conditional probability

P(k|cutoff), the probability that genes from the

group have known interactions with each other

with given cutoff. It is believed that the more

deposition of the information concerning

interactions in yeast is still on the way to reach

the more complete understanding of the

underlying complex cellular networks of yeast.

Therefore, based on the currently available
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information from the database, P(k|cutoff) is

normalized as

( )
( )kP
cutoffkPratioOdd |

=
,

where P(k) is the probability of having the

known interactions, regardless of cutoff. It is

noteworthy that the Odd ratio is not sensitive to

the number of known interactions currently

available from the database. For instance, as the

new known interactions are uncovered by

various experiments, the probability P(k|cutoff)

increases, P(k) is also increases with keeping

the Odd ratiorelatively constant. Figure 8 shows

the Odd ratio with cutoff = 0.95 is significantly

larger than the one with cutoff = 0.7. Therefore,

it can be concluded that the higher the cutoff,

the more significant output and vice versa. It is

also noteworthy from Figure 7 that some of

genes, previously not identified as cell

cycle-regulated, have known interactions with

ones identified as cell cycle-regulated. Thus,

these could be considered as newly identified cell

cycle-regulated genes by SOMPS.

Fig. 6. The relationship between cutoff and

P-value. (a) Top panel shows the distribution of

phase synchronization strength between trained

mean fields and input expression signals from

random expression dataset. (b) The bottom panel

shows how the P-valuecan be calculated by

integrating the random distribution.

Fig. 7. The visualization of known physical or

genetic interactions from the BioGRID database for

one of trained mean fields (Fig. 4-a4) with cutoff

= 0.7. The black circle nodes correspond to cell

cycle-regulated genes from three benchmark sets

and the gray triangular nodes correspond to genes

not included in benchmark sets.
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Fig. 8. Odd ratio of having known interactions

between genes assigned to one of trained mean

fields (Fig. 4-a4).

4. Conclusions

This study shows that it is feasible to

identify cell cycle-regulated genes using the

theory of phase synchronization. With the theory

of multivariate phase synchronization, SOMPS is

able to detect groups of genes, and genes from

each group are considered as being

"active"having relatively many interactions with

others during cell cycle. Therefore, this study

provides a novel insight to the identification of

cell cycle-regulated genes, compared to other

previous methods that mainly consider the

periodic characteristic of expression signals

during cell cycle.

According to the theory of bivariate phase

synchronization, the gene that is assigned to its

mean field could be considered as having

interaction with its mean fields. It means that

these mean fields could be considered as the

estimated activity of cell cycle related

transcription factors. Therefore, SOMPS has a

potential application to the study of

transcriptional regulatory networks, and the

further study of SOMPS for transcriptional

regulatory networks is left as future study.
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