DOI QR코드

DOI QR Code

알로자임에 의한 무 씨의 순수성 검증

Determination of Seed Purity in Radish (Raphanus sativus L.) Using Allozyme

  • 허만규 (동의대학교 분자생물학과)
  • Huh, Man-Kyu (Department of Molecular Biology, Dong-eui University)
  • 발행 : 2008.07.30

초록

무(Raphanus sativus L.)는 세계적으로 중요한 작물 중의 하나이다. 십자화과 식물 종자 생산에서 원하지 않은 내교잡에 의한 종자 결실로 오염이 발생하므로 씨의 순수성 검증은 매우 중요하다. 재배종 진주 대평 무(R. sativus cv. Daepeng)와 백자 무(R. sativus cv. Backza)의 교잡 분석을 실시하였다. 알로자임으로 상업적으로 이용되는 잡종 제1세대($F_1$) 무에 있어서 씨의 순수성을 평가하였다. 웅성과 자성 양친 360개체에 27개 대립유전자좌위를 조사하였다. 특히 Par-1 ($aa{\times}bb$), Lap-1($aa{\times}bb$), Est-1 ($aa{\times}bb$)에서 명확한 잡종 밴드를 나타내었다. Est-1 대립유전자좌위에서 자성 배우체로부터 기원된 것이 15개체(8.3%)가 발견되었고, 웅성 배우체로부터 기원된 것이 26개체(14.4%)가 발견되었다. 또한 다양도 측면에서 양친 계통에 비해 잡종 계통에서 높은 유전적 다양도를 유지하고 있었다. 샤논의 정보지수(Shannon's index)를 이용한 표현형 다양도는 교잡 계통이 가장 높았다. 알로자임에 의한 무 계통의 교잡에 의한 종자 생성에서 씨에 대한 순수성 검증이 효과적으로 탐지되어 육종 연구에 기여할 수 있을 것으로 판단된다.

Radish (Raphanus sativus L.) is one of very important crop plants in the world. It is very important to determine hybrid seed quality in the production of hybrid Brassica vegetable seeds to avoid unacceptable contamination with self-inbred (sib) seeds. The allozyme for evaluating seed purity in a commercial $F_1-hybrid$ radish cultivar is demonstrated. Three hundred sixty seeds from the male and female harvest were subsequently screened for seed purity using 27 isozyme loci. Especially, F1 hybrids of radish, Per-1 ($aa{\times}bb$), Lap-1 ($aa{\times}bb$), Est-1 ($aa{\times}bb$) were presented clear hybrid bands. Est-1 locus revealed that 15 (8.3%) seeds from the female harvest and 26 (14.4%) seeds from the male harvest were sibs. It maintains higher than average level of genetic diversity compared with their correspondent parents. Shannon's index of phenotypic diversity (I) of hybrids was the highest of all accessions (R. sativus L. cv. Daepeng, R. sativus L. cv. Backza, and their hybrids). The allozyme may lead to a better insight into the hybrid seed purity.

키워드

참고문헌

  1. Arus, P., C. R. Shields and T. J. Orton. 1985. Application of isozyme electrophoresis for purity testing and cultivar identification of F1 hybrids of Brassica oleraceae. Euphytica 34, 651-657 https://doi.org/10.1007/BF00035400
  2. Ballester, J. and M. C. de Vicente. 1998. Determination of F1 hybrid seed purity in pepper using PCR-based markers. Euphytica 103, 223-226. https://doi.org/10.1023/A:1018372523343
  3. Barrowclough, C. F. 1983. Biochemical studies of mocroevolutionary processes, pp. 223-261, In Brush A. H. and C. G. Clark (eds.), Perspectives in Ornithology, New York, Cambridge University Press.
  4. Bowman, K. D., K. Hutcheson, E. P. Odum and L. R. Shenton. 1971. Coments on the distribution of indices of diversity. Stat. Ecol. 3, 315-359.
  5. Crockett, P. A., P. L. Bhalla, C. K. Lee and M. B. Singh. 2000. RAPD analysis of seed purity in a commercial hybrid cabbage (Brassica oleraceae var. capitata) cultivar. Genome 43, 317-321. https://doi.org/10.1139/gen-43-2-317
  6. Edwards, A. L. and R. R. Sharitz. 2000. Population genetics of two rare perennials in isolated wetlands: Sagittaria isoetiformis and S. teris (Alismataceae). Am. J. Bot. 87, 1147-1158. https://doi.org/10.2307/2656651
  7. Ellstrand, N. C. and D. R. Marshall. 1985. Interpopulational gene flow by pollen in wild radish, Raphanus sativus. Am. Nat. 126, 606-616. https://doi.org/10.1086/284442
  8. Hashizume, T., T. Sato and M. Hirai. 1993. Determination of genetic purity of hybrid seed in watermelon (Citrillus lanatus) and tomato (Lycopersicon esculentum) using random amplified polymorphic DNA (RAPD). Jpn. J. Breed. 43, 367-375. https://doi.org/10.1270/jsbbs1951.43.367
  9. Hamrick, J. L. and M. J. W. Godt. 1989. Allozyme diversity in plant species, pp. 304-319, In Brown, A. H. D., M. T. Clegg, A. L. Kahler and B. S. Weir (eds.), Plant Population Genetics, Breeding and Genetic Resources, Sinauer Press, Sunderland. MA.
  10. Huh, M. K. and O. Ohnishi. 2001. Allozyme diversity and population structure of Japanese and Korean populations of wild radish, Raphanus sativus var. hortensis f. raphanistroides (Brassicaceae). Genes Genet. Syst. 76, 15-23. https://doi.org/10.1266/ggs.76.15
  11. Isabel, N., J. Beaulieu and J. Bousquet. 1995. Complete congruence between gene diversity estimates derived from genotypic data at enzyme and random amplified polymorphic DNA loci in black spruce. Proc. Natl. Acad. Sci. USA 92, 6369-6373. https://doi.org/10.1073/pnas.92.14.6369
  12. Karpechenko, G. D. 1924. Hybrids of Raphanus sativus L. x Brassica oleracea L. J. Genetics 14, 375-396. https://doi.org/10.1007/BF02983104
  13. Liu, Z. and G. R. Furnier. 1993. Comparison of allozyme, RFLP, and RAPD markers for revealing genetic variation in wild and cultivated Amaranthus species (Amaranthaceae). Theor. Appl. Genet. 93, 722-732. https://doi.org/10.1007/BF00224068
  14. Livneh, O., Y. Nagler, Y. Tal, S. B. Gafni, J. S. Beckman and J. Sela. 1990. RFLP analysis of a hybrid cultivar of pepper (Capsium annuum) and its use in distinguishing between parental lines and in hybrid identification. Seed Sci. Techol. 18, 209-214.
  15. King, L. M. and B. A. Schaal. 1989. Ribosomal DNA variation and distribution of Rudbeckia missouriensis. Evolution 42, 1117-1119.
  16. Paran, I., D. Horowwitz, D. Zamir and S. Wolf. 1995. Random amplified polymorphic DNA markers are useful for purity determination of tomato hybrids. HortSci. 30, 377.
  17. Przybylska, J., Z. Zimnick- Przybylska and P. Krajewski. 2000. Diversity of seed globulins in Lathyrus sativus L. and some related species. Genet. Res. & Crop Evol. 47, 239-246. https://doi.org/10.1023/A:1008750423357
  18. Rush, S., J. K. Conner and P. Jennetten. 1995. The effects of natural variation in pollinator visitation on rates of pollen removal in wild radish, Raphanus raphanistrum (Brassicaceae). Am. J. Bot. 82, 1522-1526. https://doi.org/10.2307/2446180
  19. Schiavo, F. L., G. Giuliano and M. Terzi. 1983. Identifying natural and parasexual hybrids, pp. 305-312, In Tanksley and T. J. Orton (eds.), Isozymes in Plant Genetics and Breedings, Part A, Elservier Science Publishers B.V. Amsterdam, The Netherlands.
  20. Skroch, D., J. Tivang and J. Nienhuis. 1992. Analysis of genetic relationships using RAPD marker data. In Application of RAPD technology to plant breeding. pp. 26-30. Joint Plant Breeding Symposia Series. November 1992, Minneapolis, Minesota.
  21. Soltis, D. E., H. Haufer, D. C. Darrow and G. J. Gastony. 1983. Starch gel electrophoresis of ferns: A compilation of grinding buffers, gel and electrode buffers, and staining schedules. Am. Fern J. 73, 9-27. https://doi.org/10.2307/1546611
  22. Spooner, D. M., J. Tivang, J. Nienhuis, J. T. Miller, D. S. Douches and M. A. Contrras. 1996. Comparison of four molecular markers in measuring relationships among the wild potato relatives Solanum section Etuberosum (subgenus Potatoe). Theor. Appl. Genet. 92, 32-540.
  23. Waycott, M. 1995. Assessment of genetic variation and clonality in the seagrass Posidonia australisusing RAPD and allozyme analysis. Marine Ecol. Prog. Series 116, 89-295.