DOI QR코드

DOI QR Code

Inhibitory Effect of Conditioned Medium of Silk Fibroin-Treated Osteoblasts in Osteoclast Differentiation

실크피브로인을 처리한 MC3T3-E1 조골세포 조건배양액의 파골세포 분화억제효과

  • Yeo, Joo-Hong (Dept. of Agricultural Biology, National Institute of Agricultural Science and Technology) ;
  • Park, Kyung-Ho (Dept. of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University) ;
  • Ju, Won-Chul (Dept. of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University) ;
  • Lee, Jin-Ah (Dept. of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University) ;
  • Lee, Kwang-Gill (Dept. of Agricultural Biology, National Institute of Agricultural Science and Technology) ;
  • Woo, Soon-Ok (Dept. of Agricultural Biology, National Institute of Agricultural Science and Technology) ;
  • Han, Sang-Mi (Dept. of Agricultural Biology, National Institute of Agricultural Science and Technology) ;
  • Kweon, Hae-Yong (Dept. of Agricultural Biology, National Institute of Agricultural Science and Technology) ;
  • Kim, Sung-Su (Dept. of Anatomy, Chung-Ang University) ;
  • Cho, Yun-Hi (Dept. of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University)
  • 여주홍 (농촌진흥청 농업생물부) ;
  • 박경호 (경희대학교 동서의학대학원 의학영양학과) ;
  • 주원철 (경희대학교 동서의학대학원 의학영양학과) ;
  • 이진아 (경희대학교 동서의학대학원 의학영양학과) ;
  • 이광길 (농촌진흥청 농업생물부) ;
  • 우순옥 (농촌진흥청 농업생물부) ;
  • 한상미 (농촌진흥청 농업생물부) ;
  • 권해용 (농촌진흥청 농업생물부) ;
  • 김성수 (중앙대학교 의과대학 해부학교실) ;
  • 조윤희 (경희대학교 동서의학대학원 의학영양학과)
  • Published : 2008.08.30

Abstract

In this study, we investigated the indirect effect of silk-fibroin on osteoclastic differentiation of RAW264.7 cells. The conditioned medium were collected from MC3T3-E1 osbeoblasts treated with $0.001\;mg/mL{\sim}0.1\;mg/mL$ silk fibroin for 6 days, mixed in 1:1 ratio with osteoclast medium, and then added into RAW264.7 cells with receptor activator of nuclear factor kappa B ligand (RANKL), a differentiation inducer for 3 days. Of osteoclastic cytokines in the conditioned medium, the protein expression of osteoprotegerin (OPG) with silk-fibroin was not significantly different. However, the protein expression of interleukin (IL)-$1{\beta}$ was specifically lower in a dose dependent manner. In RAW264.7 cells, the conditioned medium with silk-fibroin inhibited RANKL induced osteoclastic differentiation as total number of multinucleated tartrate-resistant alkaline phosphatase (TRAP)-positive osteoclasts in a dose dependent manner. Taken together, we demonstrated that the conditioned medium of silk-fibroin treated osteoblasts inhibits RANKL induced differentiation of osteoclasts with inhibiting selective expression of IL-$1{\beta}$.

본 연구는 MC3T3-E1 조골전구세포에 실크피브로인 처리 시 파골세포분화 관련 국소인자 중 파골세포로의 분화를 강력히 유도하는 IL-$1{\beta}$의 발현 및 파골세포로의 분화억제에 관여하는 국소인자인 OPG의 발현변화를 조골세포 조건 배양액에서 살펴보았으며, 이 조골세포 조건배양액을 RAW264.7 파골전구세포에 처리 시 파골세포로의 분화를 억제하는지를 알아보았다. 조골세포 조건배양액에서 OPG의 발현은 농도별($0.001\;mg/mL{\sim}0.1\;mg/mL$) 실크피브로인 처리 시 $86%{\sim}100%$로 양성대조군(+C)과 유의적 차이가 없었다. 그러나 IL-$1{\beta}$의 발현은 0.1 mg/mL 실크피브로인 처리 시 양성대조군(+C)의 1.8% 수준으로 그 발현을 현저히 억제 하였다. 조골세포조건배양액을 처리한 RAW264.7 세포의 파골세포로의 분화정도는 농도 의존적으로 현저히 감소 하였다. 특히, 0.1 mg/mL의 실크피브로인을 처리한 조골세포 조건배양액 처리 시 파골세포로 분화하지 않은 음성대조군(-RANKL) 수준으로 파골세포 분화를 현저히 억제한 것은 OPG의 발현 증가가 아닌 IL-$1{\beta}$의 발현 억제에 의한 것으로 사료되며, 추후 연구를 통해 관련 기전의 연구가 필요할 것으로 생각되어진다.

Keywords

References

  1. Parfitt AM. 1994. Osteonal and hemi-osteonal remodeling: The spatial and temporal framework for signal traffic in adult human bone. J Cell Biochem 55: 273-286 https://doi.org/10.1002/jcb.240550303
  2. Jilka RL, Weinstein RS, Bellido T, Parfitt AM, Manolagas SC. 1998. Osteoblast programmed cell death (apoptosis): modulation by growth factors and cytokines. J Bone Miner Res 13: 793-802 https://doi.org/10.1359/jbmr.1998.13.5.793
  3. Udagawa N, Takakashi N, Akatsu T, Tanaka H, Sasaki T, Nishihara T. 1990. Origin of osteoclasts: mature monocytes and macrophages are capable of differentiating into osteoclasts under a suitable microenvironment prepaared by bone marrow-derived stromal cells. Proc Natl Acad Sci USA 87: 7260-7264 https://doi.org/10.1073/pnas.87.18.7260
  4. Kong YY, Boyle WJ, Penninger JM. 2001. Osteoprotegerin and receptor activator of nuclear factor $_KB$ ligand in the pathogenesis and treatment of rheumatoid arthritis. Arthritis Rheum 44: 253-259 https://doi.org/10.1002/1529-0131(200102)44:2<253::AID-ANR41>3.0.CO;2-S
  5. Kurolouchi K, Kambe F, Yasukawa K, Izumi R, Ishiguro N, Iwata H. 1998. TNF-$\alpha$ increases expression of IL-6 and ICAM-1 genes through activation of NK-$_KB$ in osteoblast-like ROS17/2.8 cells. J Bone Miner Res 13: 1290-1299 https://doi.org/10.1359/jbmr.1998.13.8.1290
  6. Chaudhary LR, Spelsber TC, Riffs BL. 1992. Production of various cytokines by normal human osteoblast-like cells in response to interleukin 1$\beta$ and tumor necrosis factor-$\alpha$: lack of regulation by 17$\beta$-estradiol. Endocrinology 130: 2528-2534 https://doi.org/10.1210/en.130.5.2528
  7. Smith DD, Gowen M, Mundy GR. 1987. Effects of interferon-gamma and other cytokines in collagen synthesis in fetal rat bone cultures. Endocrinology 120: 2494-2499 https://doi.org/10.1210/endo-120-6-2494
  8. Jilka RL. 1998. Cytokines, bone remodeling, and estrogen deficiency: a 1998 update. Bone 23: 75-81 https://doi.org/10.1016/S8756-3282(98)00077-5
  9. Keeting PE, Rifas L, Harris SA, Colvard DS, Spelsberg TC, Peck WA. 1991. Evidence for interleukin-1 production by cultured normal human osteoblast-like cells. J Bone Miner Res 6: 827-833 https://doi.org/10.1002/jbmr.5650060807
  10. Lorenz CH, Armin EH. 1997. Osteoprotegerin: a novel local player in bone metabolism. Eur J Endocrinol 137: 345-346 https://doi.org/10.1530/eje.0.1370345
  11. Tobias JH, Compston JE. 1999. Does estrogen stimulate osteoblast function in postmenopausal women? Bone 24: 121-124 https://doi.org/10.1016/S8756-3282(98)00156-2
  12. Rogers J. 1967. Estrogens in the menopause and postmenopause. N Engl J Med 280: 364-367 https://doi.org/10.1056/NEJM196902132800705
  13. Baker VL, Leitman D, Jaffe RB. 2000. Selective estrogen receptor modulators in reproductive medicine and biology. Obstet Gynecol Surv 55: 21-47 https://doi.org/10.1097/00006254-200007001-00001
  14. Gray TK, Frynn TC, Gray KM, Nabell LM. 1987. 17$\beta$-estradiol acts directly on the clonal osteoblast cell line UMR106. Proc Natl Acad Sci 84: 6267-6271 https://doi.org/10.1073/pnas.84.17.6267
  15. Aldercreutz H, Mazur W. 1996. Phyto-oestrogens in relation to cancer and other human health risks. Proc Nutr Soc 55: 399-417 https://doi.org/10.1079/PNS19960038
  16. Gregory HA, Frank D, Caroline J, Tara C, Rebecca LH, Jingsong C, Helen L, John R, David LK. 2003. Silk-based biomaterials. Biomaterials 24: 401-416 https://doi.org/10.1016/S0142-9612(02)00353-8
  17. Li C, Vepari C, Jin HJ, Kim HJ, Kaplan DL. 2006. Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials 27: 3115-3124 https://doi.org/10.1016/j.biomaterials.2006.01.022
  18. Yeo JH, Lee KG, Kim HC, Oh YL, Kim AJ, Kim SY. 2000. The effect of PVA/chitosan/fibroin (PCF)-blended sponge on wound healing in rats. Biol Pharm Bull 23: 1220-1223 https://doi.org/10.1248/bpb.23.1220
  19. Yeo JH, Lee KG, Kweon HY, Woo SO, Han SM, Kim SS, Demura M. 2006. Fractionation of a silk fibroin hydrolysate and its protective function of hydrogen peroxide toxicity. J Appl Polym Sci 102: 772-776 https://doi.org/10.1002/app.23740
  20. Kim DK, Kang YK, Lee MY, Lee KG, Yeo JH, Lee WB, Kim YS, Kim SS. 2005. Neuroprotection and enhancement of learning and memory by BF-7. J Health Sci 51: 317-324 https://doi.org/10.1248/jhs.51.317
  21. Susan S, Mary BM, Gloria G, David LK. 2001. Functionalized silk-based biomaterials for bone formation. J Biomed Mater Res 54: 139-148 https://doi.org/10.1002/1097-4636(200101)54:1<139::AID-JBM17>3.0.CO;2-7
  22. Madyarov S, Lee KG, Yeo JH, Nam J, Lee YW. 2000. Improved method for the preparation of silk fibroin hydrolysates. Korean J Seric Sci 41: 102-110
  23. Fanti P, Monier-Faugere MC, Geng Z, Schmidt J, Morris PE, Cohen D, Malluche HH. 1998. The phytoestrogen genistein reduces bone loss in short-term ovariectomized rats. Osteoporosis Int 8: 274-281 https://doi.org/10.1007/s001980050065
  24. Sugimoto E, Yamaguchi M. 2000. Anabolic effect of genistein in osteoblastic MC3T3-E1 cells. Int J Mol Med 5: 515-520
  25. Chambers TJ. 2000. Regulation of the differentiation and function of osteoclasts. J Pathol 192: 4-13 https://doi.org/10.1002/1096-9896(2000)9999:9999<::AID-PATH645>3.0.CO;2-Q
  26. Hotokezaka H, Sakai E, Kanaoka K, Saito K, Matsuo KI, Kitaura H, Yoshida N, Nakayama K. 2002. U0126 and PD98059, specific inhibition of MEK, accelerate differentiation of RAW264.7 cells into osteoclast-like cells. J Biol Chem 277: 47366-47372 https://doi.org/10.1074/jbc.M208284200
  27. Kang SA, Jang KH, Cho YH, Hong KH, Kong SH, Choue RW. 2001. High performance liquid chromatographic analysis of isoflavones in soybean and blackbean. J Arahe 8: 44-48
  28. Arnett TR. 1990. Update on bone cell biology. Eur J Orthod 12: 81-90 https://doi.org/10.1093/ejo/12.1.81
  29. Kameda T, Mano H, Yuasa T, Mori Y, Miyazawa K, Shiokawa M, Nakamaru Y, Hiroi E, Hiura K, Kameda A, Yang NN, Hakeda Y, Kumegawa M. 1997. Estrogen inhibits bone resorption by directly inducing apoptosis of the bone resorbing osteoclasts. J Exp Med 186: 489-495 https://doi.org/10.1084/jem.186.4.489
  30. Mok SK, Shin LLS. 1996. The effects of prostaglandine and dibutylryl cAMP on osteoblastic cell activity and osteoclast generation. J Wonkwang Dental Res Int 6: 43-62
  31. Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, Tomoyasu A, Yano K, Goto M, Murakami A, Tsuda E, Morinaga T, Higashio K, Udagawa N, Takahashi N, Suda T. 1998. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 95: 3597-3602 https://doi.org/10.1073/pnas.95.7.3597
  32. Khosla S. 2001. The OPG/RANKL/RANK system. Endocrinology 142: 5050-5055 https://doi.org/10.1210/en.142.12.5050
  33. Thomas C, Spelsberg M, Subramaniam B, Lawrence R, Sundeep K. 2005. The actions and interactions of sex steroids and growth factors/cytokines on the skeleton. Mol Endo 13: 819-828 https://doi.org/10.1210/me.13.6.819
  34. Evans DM, Ralston SH. 1996. Nitric oxide and bone. J Bone Miner Res 11: 300-305 https://doi.org/10.1002/jbmr.5650110303
  35. Helfrich MH, Evans DE, Grabowski PS, Pollock JS, Ohshima H, Ralston SH. 1997. Expression of nitric oxide synthase isoforms in bone and bone cell cultures. J Bone Miner Res 12: 1108-1115 https://doi.org/10.1359/jbmr.1997.12.7.1108

Cited by

  1. Effects of silk fibroin hydrolysate on bone metabolism in ovariectomized rats vol.30, pp.1, 2015, https://doi.org/10.7852/ijie.2015.30.1.17
  2. Silk fibroin hydrolysate inhibits osteoclastogenesis and induces apoptosis of osteoclasts derived from RAW 264.7 cells vol.30, pp.5, 2012, https://doi.org/10.3892/ijmm.2012.1120
  3. Porous and nonporous silk fibroin (SF) membranes wrapping for Achilles tendon (AT) repair: Which one is a better choice? pp.15524973, 2018, https://doi.org/10.1002/jbm.b.34167
  4. Effect of a Fibroin Enzymatic Hydrolysate on Memory Improvement: A Placebo-Controlled, Double-Blind Study vol.10, pp.2, 2018, https://doi.org/10.3390/nu10020233