References
- P. A. Bliman, Mathematical study of the Dahl's friction model, European Journal of Mechanics 11 (1992), 835-848.
- P. A. Bliman and M. Sorine, Friction modelling by hysteresis operators, application to Dahl, stricktion, and Stribeck effects, Proceedings of Conference on Models and Hysteresis, Ternto, Italy (1991).
- S. I. Cho and I. J. Ha, A learning approach to tracking in mechanical systems with friction, IEEE Trans. Automat. Control 45 (2002), 111-116. https://doi.org/10.1109/9.827365
- P. Dahl, A solid friction model, Aerospace Corp. El Segundo CA, Tech. Report TOR-0158(3107-18)-1 (1968).
- D. A. Haessin Jr., and B. Friedland, On the modeling and simulation of friction, ASME Journal of Dynamic Systems, Measurements and Control 113 (1991), 354-362. https://doi.org/10.1115/1.2896418
- H. Khalil, Nonlinear Systems, Macmillan Co, 1992.
- C. Makkar, Nonlinear modeling, identification, and compensation for frictional disturbances (2006), Master thesis, University of Florida.
- C. Makkar, G. Hu, W. G. Sawyer, and W. E. Dixon, Lyapunov-based tracking control in the presence of uncertain nonlinear parameterizable friction, IEEE Trans. Automat. Control 52 (2007), 1988-1994. https://doi.org/10.1109/TAC.2007.904254
- P. Vedagarbha, D. M. Dawson, and M. Feemster, Tracking control of mechanical systems in the presence of nonlinear dynamic friction effects, IEEE Transactions on Control Systems Technology 7 (1997), 446-456. https://doi.org/10.1109/87.772160
- H. S. Yang, M. Berg, and B. I. Hong, Tracking control of mechanical systems with partially known friction model, Trans. on Control, Automation, and Systems Engr. 4 (2002), 311-318.