An Efficient Analysis Method for Planar Microstrip Transmission Line

플라나 마이크로스트립 전송선의 효율적 해석 방법

  • Kim, Tae-Won (Department of Military Defense Information and Communication, Sangji Youngseo College)
  • 김태원 (상지영서대학 국방정보통신과)
  • Published : 2008.06.25

Abstract

The main advantage of the TLM analysis method is the ease with which even the most complicated transmission line structures. In this paper, using symmetrical condensed node(SCN), the TLM numerical technique has been successfully a lied to microstrip meander line. A detailed technique of the symmetrical condensed node(SCN) may be used to model planar microstrip transmission line is presented. Also, the S-parameters $S_{11}$ and $S_{21}$ of two types of microstrip meander line have been computed. From obtained results, TLM analysis is shown to be an efficient method for modeling complicated structure of planar microstrip transmission line. The TLM results presented here are useful in the design of microwave integrated circuits at higher frequencies region.

TLM 수치 해석법의 주요한 장점은 가장 복잡한 전송선 구조에 있어서도 해석이 용이하다는 것이다. 본 논문에서는 대칭압축노드를 이용한 TLM법을 마이크로스트립 meander 라인에 성공적으로 적용하였다. 플라나 마이크로스트립 전송선을 모델화하기 위한 대칭압축노드에 대한 상세한 기술이 제시되었고 또한 2종류의 마이크로스트립 meander 라인의 산란 파라메터 $S_{11}$$S_{21}$을 계산하였다. 구해진 결과로부터 TLM 해석법이 복잡한 플라나 마이크로웨이브 전송선 구조를 모델링하는데 유용한 해석법임을 보였다. 제시된 TLM 해석 결과는 고주파 영역에서 마이크로웨이브 집적 회로를 설계하는데 유용하게 사용될 수 있다.

Keywords

References

  1. A. El-Sherbiny, "Exact Analysis of Shielded Microstrip Lines and Bilateral Finlines", IEEE Trans. Microwave Theory Tech., vol. MTT-29, pp. 669-675, July 1981
  2. J. Bornemann and F. Arndt, "Calculating the Characteristic Impedance of Finlines by Transverse Resonance Method", IEEE Trans. Microwave Theory Tech., vol. MTT-21, pp. 85-92, Jan. 1986
  3. R. Sorrentino and T. Itoh, "Transverse Resonance Analysis of Finline Discontinuities", IEEE Trans. Microwave Theory Tech., vol. MTT-32, pp. 1633-1638, Dec. 1984
  4. L. P. Schmidt and T. Itoh, "Spectral Domain Analysis of Dominant and Higher Modes in Finlines", IEEE Trans. Microwave Theory Tech., vol. MTT-28, pp. 981-985, Sept. 1980
  5. S. Kagami and I. Fukai, "Application of Boundary Element Method to Electromagnetic Field Problems", IEEE Trans. Microwave Theory Tech., vol. MTT-32, pp. 455-461, April. 1984
  6. P. Silvester, R. L. Ferrari, "Finite Element for Electrical Engineers", Cambridge University Press, Cambridge 1983
  7. P. B. Johns, "A Symmetrical Condensed Node for the TLM Method," IEEE Trans. Microwave Theory Tech., vol. MTT-35, pp. 370-377, April. 1987
  8. Poman So, Eswarappa, and Wolfgang J. R. Hoefer, "A Two-Dimensional TLM Microwave Simulator Using New Concepts and Procedures", IEEE Trans. Microwave Theory Tech., vol. MTT-37, pp. 1877-1884, Dec. 1989
  9. P. B. Johns, "A Symmetrical Condensed Node for the TLM Method," IEEE Trans. Microwave Theory Tech., vol. MTT-35, pp. 370-377, Sept. 1987
  10. V. Trenkic, "The Development and Characterization of Advanced Nodes for the TLM Method", Ph. D. Thesis, University of Nottingham, UK, Nov. 1995
  11. C. Eswarappa and Wolfgang J. R. Hoefer, "One-Way Equation Absorbing Boundary Conditions for 3D TLM Analysis of Planar and Quasi-Planar Structures," IEEE Trans. Microwave Theory Tech., vol. MTT-42, pp. 1669-1677, Sept. 1994
  12. R. L. Higdon, "Numerical Absorbing Boundary Conditions for the Wave Equation," Math Comp., vol. 49, no. 179, pp. 65-91, July. 1987 https://doi.org/10.2307/2008250
  13. Eswarappa, George I. Costache and Wolfgang J. R. Hoefer, "Transmission Line Matrix Modeling of Dispersive Wide-Band Absorbing Boundaries with Time Domain Diakoptics for S-Parameter Extraction," IEEE Trans. Microwave Theory Tech., vol. MTT-38, pp. 379-385, April. 1990