International Journal of Fuzzy Logic and Intelligent Systems, vol. 8, no. 2, June 2008 pp. 121-125

PSN: A Dynamic Numbering Scheme for W3C XQuery Update Facility

Dong Kweon Hong

Computer Engineering dept. of Keimyung University

abstract

It is essential to maintain hierarchical information properly for efficient XML query processing. Well known approach to represent
hierarchical information of XML tree is assigning a specific node number to each node of XML tree. Insertion and deletion of XML
node can occur at any position in a dynamic XML tree. A dynamic numbering scheme allows us to add nodes to or delete nodes from
an XML tree without relabeling or with relabeling only a few existing nodes of XML tree while executing XML query efficiently.
According to W3C XQuery update facility specifications a node can be added as first or last child of the existing node in XML tree.
Generating new number for last child requires referencing the number of previous last child. Getting the number of last child is very
costly with previous approaches. We have developed a new dynamic numbering scheme PSN which is very effective for insertion of a

node as last child. Our approach reduces the time to find last child dramatically by removing sorting of children.

Key Word : dynamic XML data, dynamic numbering scheme, XML updates

1. Introduction

There exists many active researches to manage large
XML data effectively and XML data management on SQL
database have been shown very promising in many re-
searches{1, 2, 3, 4]. It is needed to encode hierarchical in-
formation when we store XML data on relational databases
where a relational data model is flat and it is based on
bag. Several numbering schemes already have been pro-
posed to encode XML node relationships in static and dy-
namic environments. Dewey Order is a well known ap-
proach in static XML environments where insertions or
deletions of a part of XML tree are not allowed[3].
ORDPATH and DLN are dynamic numbering schemes that
can add a node without relabeling other nodes in XML
tree[5, 6, 7]. ORDPATH uses Dewey Order dot notation. It
uses "careting” operation to make a new number by in-
troducing another dot level when there is no proper number
between two nodes. Since there is no proper number be-
tween (1.3.1) and (1.3.3) it makes a new node number
(1.3.2.1) [5].

Conceptually DLN (Dynamic Level Numbering) is very
similar to ORDPATH. DLN uses sub_value idea to make
new numbers. When there is no proper number between
two consecutive number m and n DLN creates a number
by attaching a suffix to m. Since there is no proper num-
ber between node (1.2.1) and (1.2.2) it makes a new node
number (1.2.1/1) [6]. Whenever a node is inserted to an
XML tree both of ORDPATH and DLN search for neigh-
bouring nodes of insertion position to create a proper num-
ber for the new node. It is very costly to find those neigh-
bouring nodes in ORDPATH and DLN. The weakness of
ORDPATH and DLN is mainly due to the following
reasons.

(1) They were trying to maintain parent-child relationship
and sibling order together with only one number.

Manuscript received Jan.14, 2008; revised May. 21, 2008.

(2) The number can be used to identify the relative sibling
order but they are not enough for absolute sibling order
in both approach. They can not identify whether a node
is the first or the second child with the number. To
find out the absolute sibling order all siblings need to
be compared.

In this paper we propose a new dynamic numbering
scheme PSN, P and S field Number scheme, which allows
efficient insertion and deletion of parts of XML. With PSN
approach S field of a few nodes could be updated when a
new node is inserted to XML tree. Still its numbering
process could be done with much less cost than previous
approaches. PSN solves the problem of ORDPATH and
DLN by separating parent-child and sibling relationships. It
can identify the absolute sibling order without comparing
the relative order of siblings.

2. PSN Dynamic Numbering Scheme

PSN number consists of P and S fields as in [Fig. 1]. P
field maintains parent-child relationship by using Dewey
Order dot notation and S field maintains sibling relation-
ships by using natural numbers.

P field S field

Fig.1 PSN number format

In PSN we maintain 3 additional metadata for each
node. They are pmax, sno, and eno of each node. sno of a
node represents the smallest S field value of its children.
While eno represents the largest S field value. These values
make us to find (n)th child of a node without looking at
PSN numbers of all its children. Value of pmax is the larg-
est last component value that has been assigned to P field
value of its children. It helps us to generate a unique num-

121

International Journal of Fuzzy Logic and Intelligent Systems, vol. 8, no. 2, June

ber for a new node without looking at PSN numbers of all
its siblings.

Initial values of P field in XML tree are the same as
Dewey Order and P field value of a node depends only on
- the P field value of its parent as in [Fig. 2]. The value of
S field of a node is the same as the last component of P
field value of it before any update operation of XML
happens. After some operations of insertion and deletion of
nodes the last component of P field and S field value of a
node do not match.

Properties of a PSN number are as follows.

Property 1: The P field value of a node is unique in an
XML tree and uses dewey order dot notation. The value of
a, b, ¢ can be any number in a node (a.b.c|d) and the val-
ue of ¢ 1s not greater than pmax of its parent node.

Property 2: The S field value of a node ranges between
sno and eno values of its parent node.

1.1 1 1.2 2 1.3 3
1.2.1 |1 1.2.2 |2 1.3.1 |1
1.2.2.1 |1 1.2.2.2]|2

Fig. 2 Example of initial PSN representation

2.1 Insertion of an XML Node

New node can be added in any positions of XML tree
with XQuery insert operations. We can classify the in-
sertion of a node as 3 cases according to the insertion po-
sition of new node.
(1) Insertion of new node as a middle child
(2) Insertion of new node as a first child
(3) Insertion of new node as a last child

2.1.1 Insertion of Middle Child

Let's consider the situation where a new node is inserted
as a second child of XML node (1.2]2) as in [Fig. 2]. This
case can be happen when a node is inserted by using insert
before or insert after operation of XQuery.

You can find the pseudo code for insertion procedure in
[Fig .3] and you can see the result of node insertion in
[Fig. 4]. The value of P field for new node would be
(1.2.3) that represents parent-child relationships well and is
unique number in the XML tree. The value of S field
should be 2 which is greater than the first child by 1 to
maintain absolute sibling relationships. S value of the fol-

122

lowing sibling node is incremented by 1 that make its PSN
number changed to (1.2.2 |3) as a third child. Even though
node number of the third child has been changed the num-
bers of its children never be changed because parent-child
relationship is only dependent on P field value. Node
(1.2.2.1]1) and node (1.2.2.2]2) in [Fig. 2] hadn't been
changed even though its parent number has been changed
from (1.2.2|2) to (1.2.2]3).

// Pseudo code for insert after the des node
procedure insert after(des node)
{

pare = find parent node (des node);

//find node (1.2/2)

max = pare.pmax;

Assign (1.2.max +1) as P field value of new node ; //
p field (1.2/3)

Assign S field value as 2; // (1.2.3]2)

Increase S field values of all succeeding

sibling by 1;

Increase pmax and eno of pare by 1;

h

Fig. 3 Insertion of middle child

The number of children » for each node can be easily
calculated (n = eno - sno + 1) because each node main-
tains sno and eno for S value of its children. When the in-
sertion position is less than n/2 in sibling order the S wval-
ues of preceeding siblings need to be updated. Otherwise S
values of succeeding siblings need to be changed. On aver-
age n/4 of siblings need to be changed their S values with
our PSN approach. |

1.1 1 1.2 2 1.3 3

1.2.1 |1

1.2.2.1 11 1.2.2.212

Fig. 4 PSN representation after insertion of second
child

2.1.2 Insertion of First Child

A node can be added as a first child with "insert first"
or "insert before" operations of XQuery. When a node 1s
inserted in front of node (1.2.1 | 1) in [Fig. 4] the P value
of new node would be (1.2.4) and S value of it would be
0 for sibling order. Thus PSN (1.2.4 | 0) maintains its pa-
rent-child relationship and sibling relationships correctly.
The value of pmax, sno and eno of node (1.2{2) changed to
4, 0 and 3 respectively. The other nodes are never accessed

PSN: A Dynamic Numbering Scheme for W3C XQuery Update Facility

during the insertion processing. We can see the result of
insertion in [Fig. 5].

2.1.3 Insertion of Last Child

A node can be added as a last child with "insert last" or
"Insert after" operations of XQuery. Most of insertions are
likely to be in this category. Only new node and its parent
node are modified while processing insertion of last child.
For example when a node is added as a last child of node
(1.2{2) the number of new node would be (1.2.x+1 | y+1)
where X 1S pmax and y is eno of node (1.2] 2). And then
the values of pmax and eno of node (1.2|2) are incremented
by 1 to update node information. The other nodes are nev-
er updated during the insertion processing.

[1.1 1 1.2 12 1.3 |3
2 1.2.2 |3 1.3.1 1
1.2.2.1]|1 1.2.2.2|2

Fig. 5 After insertion of first child

2.2 XML Node Deletion

In dynamic XML environments nodes of XML tree can
be deleted at any position. When a node is deleted from an
XML tree all of its descendants are deleted also. It is casy
to delete nodes in subtree because all nodes in subtree
have the P field value which has the common prefix to
their parent nodes. For example all descendants of node
(1.3 | x) have the (1.3.* | x) node format. For simplicity
we only consider XML node deletion in this paper.

Deletion of a node from an XML tree can also be clas-
sified 3 cases according to the position of the node as
follows.

(1) deletion of middle child

(2) deletion of first child

(3) deletion of last child

2.2.1 Deletion of Middle Child

Let's delete a middle child node (1.2.1 | 1) from figure
[Fig. 5]. After deletion S values of siblings that are in
front of or in the back of deleted one need to be adjusted.
When we delete a node that is at the left of n/2 position (n
is the number of its siblings) in sibling order ones in front
of it need to be adjusted.

// Pseudo code for deletion
procedure delete(node m)
{
par = parent(m);
if (position of m is at the left of n/2)

{
Increment S values of siblings in front of m.
Increment sno of par;
else
{
Decrement S values of siblings in the back of m;
Decrement eno of par;
}
}
Fig. 6 Pseudo code for deletion of node m
1 1
1.1 1 1.2 2 1.3 3
1.2.4 1 1.2.3 |2 1.2.2 13 1.3.1 1
1.2.2.1 |1 1.2.2.2]2

Fig. 7 After deletion of (1.2.1|1) from Fig. 5

After we delete node (1.2.1| 1) from [Fig. 5] the S val-
ues of nodes in front of deleted nodes are updated. At the
same time we adjust sno values of node (1.2]2) to 1. When
the deleted node has » siblings on average S values of n/4
nodes are updated while processing deletion.

2.2.2 Deletion of First and Last Child

When a first child is deleted sno value of its parent is
incremented by 1. Meanwhile when a last child i1s deleted
eno value of its parent is decremented by 1. The other no-
des have never accessed.

3. Evaluation of PSN Scheme

PSN numbering scheme uses P field for parent-child re-
lationship and S field for sibling relationship. Separation of
sibling relationship from parent-child relationship enables us
to eliminate restrictions of numbers and complicated
computations. Evaluations of PSN is done by comparing it
with ORDPATH. Comparisons of PSN to ORDPATH
scheme are as follows.

1) ORDPATH uses positive odd numbers when 1t as-
signs intial numbers to an XML tree. It waste half of num-
ber space available. PSN uses any positive numbers.

2) When we insert a node as ith child to node (1.3)
with ORDPATH we need to find (i-1)th and (1)th sibling to

123

International Journal of Fuzzy Logic and Intelligent Systems, vol. 8, no. 2, June

get their numbers. Children of node (1.3) have node num-
ber such as (1.3.2.1), (1.3.2.2.1) and so on. In order to find
children from descendants of node (1.3) we need to check
whether their number follows the regular expression
(1.3.even_no .odd no) for all descendants of node (1.3).
And then we need to sort those children to find (i-1)th and
(1)th children. Insertion time T of a node can be estimated
as follows.

T(ORDPATH) = access_time(no of descendant) +
sort_time(no_of children)
(no_of descendant >> no_ of children)

In PSN (1)th child of node (1.3|x) has the node format
(1.3.y+1| z). Here y is the pmax of node (1.3]x) and z is
sno + 1 or eno - 1 with sno and eno values of node
(1.3)x). After the insertion of a node S fields of siblings
in front of or in the back of the inserted node would be
updated.

T(PSN) = access_time(no_of children / 4)

3) Insertion as a last child is the most frequent operation
among XML update operations. The node number of new
node is dependents on the one of previous last child with
ORDPATH. Locating the previous last child requires to
scan all of its siblings. While The node number of new
node is only dependent on the one of its parent with PSN.
When 1t 1s inserted as a last child there is no need to ad-
just S field values of its siblings.

T(ORDPATH) = access_time(no_of children)
T(PSN) = access_time(parent_node)

4) After continuous insertion and deletion operations the
level of ORDPATH numbers are getting longer and longer
as in [Fig. 8].(a). While in PSN the value of n is getting
bigger and bigger even the actual count of siblings is much
smaller as in [Fig. 8](b).

(a.b.c.n)

(a) (b)

Fig. 8 ORDPATH and PSN numbers

In environments where insertion and deletion operations
are occur very often we need to initialize ORDPATH num-
bers so that the level of a number and its node in the
XML tree matches each other. Meanwhile we need to initi-
alize PSN numbers so that the last component of a P field
of a node matches the number of its children.

5) When a relational database 1s used for XML re-

positories node numbers are usually selected as a primary
key. Numbers of adjacent siblings could be very different

124

due to "careting" operation of ORDPATH. For example
node (1.3.2.9) and (1.3.7) could be adjacent sibling in
XML tree. But relational DBMS do not know their rela-
tionships without a special comparison functions for
ORDPATH. Thus those numbers could not be in the same
B-tree block. Meanwhile PSN is suitable for index cluster-
ing when it is used as a primary key because its numbers
are easily ordered by comparing numbers component by
component because those numbers have the same length of
dot separated level. Numbers of siblings are apt to fit in
the same B-tree index block because numbers of siblings
have the same string lengths with PSN. |

4. Conclusions

XML has the hierarchical structure and the order of each
node in XML tree is meaningful. The hierarchical structure
and the order among nodes are usually maintained by as-
signing proper numbers to nodes. Effective numbering
schemes have been proposed for static XML in which a
part of XML is never changed. Extension of XQuery to
update facility requires a new numbering scheme for dy-
namic XML where a part of XML could be changed. Static
numbering schemes are not suitable for dynamic XML any
more.

ORDPATH is the representative dynamic numbering
scheme that has been applied to MS SQL server for XML
management. ORDPATH shows some inefficiencies in ex-
ecuting XQuery insert operations to generate new numbers
for newly inserted nodes.

In this paper we have developed new dynamic number-
ing scheme PSN which shows many advantages over
ORDPATH. With PSN we can insert a new node very effi-
ciently by locating (i)th child of a node without accessing
all descendants of it. There is no need to sort children to
find (i)th child. In addition the level of PSN number and
corresponding node level in XML tree matches each other
which make it easy to compare numbers.

References

[1] J. Shanmugasumdaram et al, "Relational Databases for
Querying XML document: Limitations and
Opportunities” in Proceedings of the 25th VLDB
Conference, 1999.

2] L Tatarinov, S. Viglas, K.Bayer, J.
Shanmugasundaram, E. Shekita, C. Zhang, "Storing
and Querying Ordered XML Using a Relational
Database System" in Proceedings of ACM SIGMOD
2002.

[3] C. Zhang, J. Naughton, D. DeWitt, Q. Luo, G.
Lohman, "On supporting Containment Queries in
Relational Database = Management Systems" in
Proceedings of ACM SIGMOD, May Santa Barbara,
CA 2001.

14]

[5]

6]

[7]

PSN: A Dynamic Numbering Scheme for W3C XQuery Update Facility

D. Dehan, D. Toman. M. Consens, and M. Tamer
Ozsu, "A Comprehensive XQuery to SQL Translation
using Dynamic Interval Encoding" in Proceedings of
ACM SIGMOD, San Diego CA, 2003.

P. O'Neil, E. ONeil, S. Pal, I. Cseri, G. Schaller,
"ORDPATHSs: Insert-friendly XML node lables" in fessor in Computer Engineering depart-
Proceeding of ACM SIGMOD, June Paris, France . ment of Keimyung University. His re-
2004. search interests are XML, databases and
T. Bohme, E. Rahm, "Supporting Efficient Streaming web technologies.

and Insertion of XML data in RDBMS" in Proceeding

of CaiSE'04 Workshop, Volume 3(DIWeb'04), pp70-81, Phone : 053-580-5281

2004. Fax : 053-580-5165

T. Harder, M. Haustein, C. Mathis, M. Wagner, "Node E-mail . dkhong(@kmu.ac.kr

labeling schemes for dynamic XML documents recon-

sidered" Data and Knowledge Engineering Volume 60,

Issue 1, 2007.

Dong Kweon Hong

He received his MS and Ph.D degree
from CIS department of University of
Florida, Gainesville, USA in 1992 and
1995. From 1997 to present, he is a pro-

125

