Fuzzy (r, s)-pre-semicontinuous mappings

Seok Jong Lee, Jin Tae Kim, and Youn Suk Eoum

Department of Mathematics, Chungbuk National University, Cheongju 361-763, Korea

Abstract

In this paper, we introduce the concept of fuzzy (r,s)-pre-semicontinuous mappings on intuitionistic fuzzy topological spaces in Šostak's sense. The concepts of fuzzy (r,s)-pre-semineighborhood and fuzzy (r,s)-quasi-pre-semineighborhood are given. The characterizations for the fuzzy (r,s)-pre-semicontinuous mappings are obtained. Also, we introduce the notions of fuzzy (r,s)-pre-semiopen and fuzzy (r,s)-pre-semiclosed mappings, and then we investigate some of their characteristic properties.

Key Words: fuzzy (r, s)-pre-semicontinuous mapping, fuzzy (r, s)-pre-semiopen mapping, fuzzy (r, s)-pre-semiclosed mapping

1. Introduction

Chang [4] defined fuzzy topological spaces. These spaces and its generalizations are later studied by several authors, one of which, developed by Šostak [17], used the idea of degree of openness. This type of generalization of fuzzy topological spaces was later rephrased by Chattopadhyay and his colleagues [5], and by Ramadan [16].

As a generalization of fuzzy sets, the concept of intuitionistic fuzzy sets was introduced by Atanassov [1]. Recently, Çoker [6] introduced intuitionistic fuzzy topological spaces using intuitionistic fuzzy sets. Using the idea of degree of openness and degree of nonopenness, Çoker and Demirci [8] defined intuitionistic fuzzy topological spaces in Šostak's sense as a generalization of smooth topological spaces and intuitionistic fuzzy topological spaces. S. Z. Bai [2] introduced the concepts of fuzzy pre-semiopen sets and fuzzy pre-semicontinuous mappings, and S. Z. Bai and W. L. Wang [3] established some other properties of fuzzy pre-semicontinuous mappings on Chang's fuzzy toplogical spaces. S. J. Lee and Y. S. Eoum [11] considered these concepts on smooth topological spaces.

In this paper, we introduce the concept of fuzzy (r,s)-pre-semicontinuous mappings on intuitionistic fuzzy topological spaces in Šostak's sense. The concepts of fuzzy (r,s)-pre-semineighborhood and fuzzy (r,s)-quasi-pre-semineighborhood are given. The characterizations for the fuzzy (r,s)-pre-semicontinuous mappings are obtained. Also, we introduce the notions of fuzzy (r,s)-pre-semiopen and fuzzy (r,s)-pre-semiclosed mappings, and then we investigate some of their characteristic properties.

접수일자: 2008년 5월 6일 완료일자: 2008년 5월 28일

2. Preliminaries

For the nonstandard definitions and notations we refer to [10, 12, 14, 15].

Definition 2.1. ([8]) Let X be a nonempty set. An *intuitionistic fuzzy topology in Šostak's sense*(SoIFT for short) $\mathcal{T} = (\mathcal{T}_1, \mathcal{T}_2)$ on X is a mapping $\mathcal{T} : I(X) \to I \otimes I$ which satisfies the following properties:

(1)
$$\mathcal{T}_1(\underline{0}) = \mathcal{T}_1(\underline{1}) = 1$$
 and $\mathcal{T}_2(\underline{0}) = \mathcal{T}_2(\underline{1}) = 0$.

(2)
$$\mathcal{T}_1(A \cap B) \geq \mathcal{T}_1(A) \wedge \mathcal{T}_1(B)$$
 and $\mathcal{T}_2(A \cap B) \leq \mathcal{T}_2(A) \vee \mathcal{T}_2(B)$.

(3)
$$\mathcal{T}_1(\bigcup A_i) \ge \bigwedge \mathcal{T}_1(A_i)$$
 and $\mathcal{T}_2(\bigcup A_i) \le \bigvee \mathcal{T}_2(A_i)$.

The $(X, \mathcal{T}) = (X, \mathcal{T}_1, \mathcal{T}_2)$ is said to be an *intuitionistic fuzzy topological space in Šostak's sense*(SoIFTS for short). Also, we call $\mathcal{T}_1(A)$ a gradation of openness of A and $\mathcal{T}_2(A)$ a gradation of nonopenness of A.

Definition 2.2. ([7, 9]) Let $(X, \mathcal{T}_1, \mathcal{T}_2)$ be a SoIFTS and $(r, s) \in I \otimes I$. Then

(1) an intuitionistic fuzzy point $x_{(\alpha,\beta)}$ in X is said to be *quasi-coincident* with the intuitionistic fuzzy set A in X, denoted by $x_{(\alpha,\beta)} qA$, if and only if $\mu_A(x) > \beta$ or $\gamma_A(x) < \alpha$.

(2) two intuitionistic fuzzy sets A and B in X are said to be *quasi-coincident*, denoted by AqB, if and only if there exists an element $x \in X$ such that $\mu_A(x) > \gamma_B(x)$ or $\gamma_A(x) < \mu_B(x)$.

The word 'not quasi-coincident' will be abbreviated as $\tilde{\textbf{q}}.$

Definition 2.3. ([13]) Let A be an intuitionistic fuzzy set in a SoIFTS $(X, \mathcal{T}_1, \mathcal{T}_2)$ and $(r, s) \in I \otimes I$. Then A is said to be

- (1) fuzzy (r, s)-pre-semiopen if $A \subseteq \text{sint}(\text{cl}(A, r, s), r, s)$,
- (2) fuzzy (r, s)-pre-semiclosed if $scl(int(A, r, s), r, s) \subseteq A$.

Definition 2.4. ([13]) Let $(X, \mathcal{T}_1, \mathcal{T}_2)$ be a SoIFTS. For each $(r, s) \in I \otimes I$ and for each $A \in I(X)$, the fuzzy (r, s)-pre-semiinterior is defined by

 $psint(A, r, s) = \bigcup \{B \in I(X) \mid B \subseteq A, \}$

 $B \quad \text{is fuzzy} \quad (r,s)\text{-pre-semiopen}\}$ and the $fuzzy \quad (r,s)\text{-pre-semiclosure}$ is defined by $\operatorname{pscl}(A,r,s) = \bigcap \{B \in I(X) \mid A \subseteq B, \\ B \quad \text{is fuzzy} \quad (r,s)\text{-pre-semiclosed}\}.$

Theorem 2.5. ([13]) Let A be an intuitionistic fuzzy set in a SoIFTS $(X, \mathcal{T}_1, \mathcal{T}_2)$ and $(r, s) \in I \otimes I$. Then we have

- (1) $\operatorname{psint}(A, r, s)^c = \operatorname{pscl}(A^c, r, s)$,
- (2) $\operatorname{pscl}(A, r, s)^c = \operatorname{psint}(A^c, r, s)$.

3. Fuzzy (r, s)-pre-semicontinuous mappings

We define the notions of fuzzy (r,s)-presemicontinuous, fuzzy (r,s)-pre-semiopen, and fuzzy (r,s)-pre-semiclosed mappings on intuitionistic fuzzy topological spaces in Šostak's sense, and then we investigate some of their characteristic properties.

Definition 3.1. Let A be an intuitionistic fuzzy set and $x_{(\alpha,\beta)}$ an intuitionistic fuzzy point in a SoIFTS $(X, \mathcal{T}_1, \mathcal{T}_2)$ and $(r,s) \in I \otimes I$. Then A is called

- (1) a fuzzy (r,s)-pre-semineighborhood of $x_{(\alpha,\beta)}$ if there is a fuzzy (r,s)-pre-semiopen set B in X such that $x_{(\alpha,\beta)} \in B \subseteq A$,
- (2) a fuzzy (r, s)-quasi-pre-semineighborhood of $x_{(\alpha,\beta)}$ if there is a fuzzy (r, s)-pre-semiopen set B in X such that $x_{(\alpha,\beta)}qB \subseteq A$.

Theorem 3.2. Let $(X, \mathcal{T}_1, \mathcal{T}_2)$ be a SoIFTS and $(r, s) \in I \otimes I$. Then an intuitionistic fuzzy set A in X is fuzzy (r, s)-pre-semiopen if and only if A is a fuzzy (r, s)-presemineighborhood of $x_{(\alpha,\beta)}$ for each intuitionistic fuzzy point $x_{(\alpha,\beta)}$ in A.

Proof. Let A be a fuzzy (r,s)-pre-semiopen set in X and $x_{(\alpha,\beta)} \in A$. Put B = A. Then B is fuzzy (r,s)-pre-semiopen in X and $x_{(\alpha,\beta)} \in B \subseteq A$. Thus A is a fuzzy (r,s)-pre-semineighborhood of $x_{(\alpha,\beta)}$.

Conversely, let $x_{(\alpha,\beta)} \in A$. Since A is a fuzzy (r,s)-pre-semineighborhood of $x_{(\alpha,\beta)}$, there is a fuzzy (r,s)-pre-semiopen set $B_{x_{(\alpha,\beta)}}$ in X such that $x_{(\alpha,\beta)} \in B_{x_{(\alpha,\beta)}} \subseteq A$. Thus we have

$$A = \bigcup \{x_{(\alpha,\beta)} \mid x_{(\alpha,\beta)} \in A\}$$

$$\subseteq \bigcup \{B_{x_{(\alpha,\beta)}} \mid x_{(\alpha,\beta)} \in A\}$$

$$\subset A.$$

Hence $A = \bigcup \{B_{x_{(\alpha,\beta)}} \mid x_{(\alpha,\beta)} \in A\}$. Therefore A is a fuzzy (r,s)-pre-semiopen set.

Theorem 3.3. Let $x_{(\alpha,\beta)}$ be an intuitionistic fuzzy point in a SoIFTS $(X, \mathcal{T}_1, \mathcal{T}_2)$ and $(r,s) \in I \otimes I$. Then $x_{(\alpha,\beta)} \in \operatorname{pscl}(A,r,s)$ if and only if BqA for any fuzzy (r,s)-quasi-pre-semineighborhood B of $x_{(\alpha,\beta)}$.

Proof. Suppose that there is a fuzzy (r,s)-quasi-presemineighborhood B of $x_{(\alpha,\beta)}$ such that $B\tilde{q}A$. Since B is a fuzzy (r,s)-quasi-pre-semineighborhood of $x_{(\alpha,\beta)}$, there is a fuzzy (r,s)-pre-semiopen set C such that $x_{(\alpha,\beta)}qC\subseteq B$. Thus $C\tilde{q}A$ and hence $A\subseteq C^c$. Since C^c is fuzzy (r,s)-pre-semiclosed, we have $x_{(\alpha,\beta)}\in\operatorname{pscl}(A,r,s)\subseteq\operatorname{pscl}(C^c,r,s)=C^c$. However $x_{(\alpha,\beta)}\notin C^c$, because $x_{(\alpha,\beta)}qC$. This is a contradiction.

Conversely, suppose $x_{(\alpha,\beta)} \notin \operatorname{pscl}(A,r,s)$. Then there is a fuzzy (r,s)-pre-semiclosed set D such that $A \subseteq D$ and $x_{(\alpha,\beta)} \notin D$. Thus D^c is fuzzy (r,s)-pre-semiopen and $x_{(\alpha,\beta)} \operatorname{q} D^c$, and hence D^c is a fuzzy (r,s)-quasi-presemineighborhood of $x_{(\alpha,\beta)}$. By hypothesis, $D^c \operatorname{q} A$ and hence $A \nsubseteq (D^c)^c = D$. This is a contradiction. \square

Definition 3.4. Let $f:(X,\mathcal{T}_1,\mathcal{T}_2)\to (Y,\mathcal{U}_1,\mathcal{U}_2)$ be a mapping from a SoIFTS X to a SoIFTS Y and $(r,s)\in I\otimes I$. Then f is called

- (1) a fuzzy (r,s)-pre-semicontinuous mapping if $f^{-1}(B)$ is a fuzzy (r,s)-pre-semiopen set in X for each fuzzy (r,s)-open set B in Y,
- (2) a fuzzy (r, s)-pre-semiopen mapping if f(A) is a fuzzy (r, s)-pre-semiopen set in Y for each fuzzy (r, s)-open set A in X,
- (3) a fuzzy (r, s)-pre-semiclosed mapping if f(A) is a fuzzy (r, s)-pre-semiclosed set in Y for each fuzzy (r, s)-closed set A in X.

Remark 3.5. It is clear that every fuzzy (r,s)-precontinuous and every fuzzy (r,s)-semicontinuous mapping is fuzzy (r,s)-pre-semicontinuous for each $(r,s) \in I \otimes I$. Also, every fuzzy (r,s)-preopen(resp. fuzzy (r,s)-preclosed) and every fuzzy (r,s)-semiopen(resp. fuzzy (r,s)-semiopen(resp. fuzzy (r,s)-pre-semiclosed). However, the following example shows that all of the converses need not be true.

Example 3.6. Let $X = \{x\}$ and let A_1 and A_2 be intuitionistic fuzzy sets in X defined as

$$A_1(x) = (0.2, 0.7), A_2(x) = (0.3, 0.5).$$

Define $\mathcal{T}: I(X) \to I \otimes I$ and $\mathcal{U}: I(X) \to I \otimes I$ by

$$\mathcal{T}(A) = (\mathcal{T}_1(A), \mathcal{T}_2(A)) = \begin{cases} (1,0) & \text{if } A = \underline{0}, \underline{1}, \\ (\frac{1}{2}, \frac{1}{3}) & \text{if } A = A_1, \\ (0,1) & \text{otherwise}; \end{cases}$$

and

$$\mathcal{U}(A) = (\mathcal{U}_1(A), \mathcal{U}_2(A)) = \begin{cases} (1,0) & \text{if } A = \underline{0}, \underline{1}, \\ (\frac{1}{2}, \frac{1}{3}) & \text{if } A = A_2, \\ (0,1) & \text{otherwise.} \end{cases}$$

Then clearly \mathcal{T} and \mathcal{U} are SoIFTs on X. Consider a mapping $f:(X,\mathcal{T})\to (X,\mathcal{U})$ defined by f(x)=x. Since $A_2\subseteq \operatorname{sint}(\operatorname{cl}(A_2,\frac{1}{2},\frac{1}{3}),\frac{1}{2},\frac{1}{3})=A_1^c$ in (X,\mathcal{T}) , $f^{-1}(A_2)=A_2$ is fuzzy $(\frac{1}{2},\frac{1}{3})$ -pre-semiopen in (X,\mathcal{T}) . Thus f is a fuzzy $(\frac{1}{2},\frac{1}{3})$ -pre-semicontinuous mapping. However, f is not a fuzzy $(\frac{1}{2},\frac{1}{3})$ -precontinuous mapping, because $A_2\nsubseteq \operatorname{int}(\operatorname{cl}(A_2,\frac{1}{2},\frac{1}{3}),\frac{1}{2},\frac{1}{3})=A_1$ in (X,\mathcal{T}) . Since $A_1\subseteq \operatorname{sint}(\operatorname{cl}(A_1,\frac{1}{2},\frac{1}{3}),\frac{1}{2},\frac{1}{3})=A_2^c$ in (X,\mathcal{U}) , $f(A_1)=A_1$ is fuzzy $(\frac{1}{2},\frac{1}{3})$ -pre-semiopen in (X,\mathcal{U}) . Thus f is a fuzzy $(\frac{1}{2},\frac{1}{3})$ -pre-semiopen mapping. However, f is not a fuzzy $(\frac{1}{2},\frac{1}{3})$ -semiopen mapping, because $\operatorname{cl}(\operatorname{int}(A_1,\frac{1}{2},\frac{1}{3}),\frac{1}{2},\frac{1}{3})=0\not\supseteq A_1$ in (X,\mathcal{U}) . On the other hand, consider a mapping $g:(X,\mathcal{U})\to (X,\mathcal{T})$ defined by g(x)=x. Then g is fuzzy $(\frac{1}{2},\frac{1}{3})$ -pre-semicontinuous and not fuzzy $(\frac{1}{2},\frac{1}{3})$ -semicontinuous. Also, g is fuzzy $(\frac{1}{2},\frac{1}{3})$ -pre-semiopen and not fuzzy $(\frac{1}{2},\frac{1}{3})$ -preopen.

Theorem 3.7. Let $f:(X, \mathcal{T}_1, \mathcal{T}_2) \to (Y, \mathcal{U}_1, \mathcal{U}_2)$ be a mapping from a SoIFTS X to a SoIFTS Y and $(r, s) \in I \otimes I$. Then the following statements are equivalent:

- (1) f is fuzzy (r, s)-pre-semicontinuous.
- (2) For each fuzzy (r, s)-closed set B in Y, $f^{-1}(B)$ is a fuzzy (r, s)-pre-semiclosed set in X.
- (3) For each intuitionistic fuzzy point $x_{(\alpha,\beta)}$ in X and each fuzzy (r,s)-open set B in Y such that $f(x_{(\alpha,\beta)}) \in B$, there is a fuzzy (r,s)-pre-semiopen set A in X such that $x_{(\alpha,\beta)} \in A$ and $f(A) \subseteq B$.

- (4) For each intuitionistic fuzzy point $x_{(\alpha,\beta)}$ in X and each fuzzy (r,s)-neighborhood B of $f(x_{(\alpha,\beta)})$, $f^{-1}(B)$ is a fuzzy (r,s)-pre-semineighborhood of $x_{(\alpha,\beta)}$.
- (5) For each intuitionistic fuzzy point $x_{(\alpha,\beta)}$ in X and each fuzzy (r,s)-neighborhood B of $f(x_{(\alpha,\beta)})$, there is a fuzzy (r,s)-pre-semineighborhood A of $x_{(\alpha,\beta)}$ such that $f(A) \subseteq B$.
- (6) $f(\operatorname{pscl}(A, r, s)) \subseteq \operatorname{cl}(f(A), r, s)$ for each intuitionistic fuzzy set A in X.
- (7) $\operatorname{pscl}(f^{-1}(B), r, s) \subseteq f^{-1}(\operatorname{cl}(B, r, s))$ for each intuitionistic fuzzy set B in Y.
- (8) $f^{-1}(\text{int}(B, r, s)) \subseteq \text{psint}(f^{-1}(B), r, s)$ for each intuitionistic fuzzy set B in Y.

Proof. $(1) \Leftrightarrow (2)$ It is obvious.

 $(1) \Rightarrow (3)$ Let $x_{(\alpha,\beta)}$ be an intuitionistic fuzzy point in X and B a fuzzy (r,s)-open set in Y such that $f(x_{(\alpha,\beta)}) \in B$. Then $x_{(\alpha,\beta)} \in f^{-1}(B)$. Put $A = f^{-1}(B)$. Then by (1), A is a fuzzy (r,s)-pre-semiopen set in X such that $x_{(\alpha,\beta)} \in A$ and $f(A) = f(f^{-1}(B)) \subseteq B$.

 $(3)\Rightarrow (1)$ Let B be a fuzzy (r,s)-open set in Y and $x_{(\alpha,\beta)}\in f^{-1}(B)$. Then $f(x_{(\alpha,\beta)})\in B$. By (3), there is a fuzzy (r,s)-pre-semiopen set $A_{x_{(\alpha,\beta)}}$ in X such that $x_{(\alpha,\beta)}\in A_{x_{(\alpha,\beta)}}$ and $f(A_{x_{(\alpha,\beta)}})\subseteq B$. Thus $x_{(\alpha,\beta)}\in A_{x_{(\alpha,\beta)}}\subseteq f^{-1}(f(A_{x_{(\alpha,\beta)}}))\subseteq f^{-1}(B)$. So we have

$$f^{-1}(B) = \bigcup \{x_{(\alpha,\beta)} \mid x_{(\alpha,\beta)} \in f^{-1}(B)\}$$

$$\subseteq \bigcup \{A_{x_{(\alpha,\beta)}} \mid x_{(\alpha,\beta)} \in f^{-1}(B)\}$$

$$\subseteq f^{-1}(B).$$

Thus $f^{-1}(B) = \bigcup \{A_{x_{(\alpha,\beta)}} \mid x_{(\alpha,\beta)} \in f^{-1}(B)\}$ and hence $f^{-1}(B)$ is fuzzy (r,s)-pre-semiopen in X. Therefore f is a fuzzy (r,s)-pre-semicontinuous mapping.

 $(1)\Rightarrow (4)$ Let $x_{(\alpha,\beta)}$ be an intuitionistic fuzzy point in X and B a fuzzy (r,s)-neighborhood of $f(x_{(\alpha,\beta)})$. Then there is a fuzzy (r,s)-open set C in Y such that $f(x_{(\alpha,\beta)})\in C\subseteq B$ and hence $x_{(\alpha,\beta)}\in f^{-1}(C)\subseteq f^{-1}(B)$. Since f is fuzzy (r,s)-pre-semicontinuous, $f^{-1}(C)$ is a fuzzy (r,s)-pre-semineighborhood of $x_{(\alpha,\beta)}$.

 $(4)\Rightarrow (5)$ Let $x_{(\alpha,\beta)}$ be an intuitionistic fuzzy point in X and B a fuzzy (r,s)-neighborhood of $f(x_{(\alpha,\beta)})$. By (4), $A=f^{-1}(B)$ is a fuzzy (r,s)-pre-semineighborhood of $x_{(\alpha,\beta)}$ and $f(A)=f(f^{-1}(B))\subseteq B$.

 $(5)\Rightarrow (3)$ Let $x_{(\alpha,\beta)}$ be an intuitionistic fuzzy point in X and B a fuzzy (r,s)-open set in Y such that $f(x_{(\alpha,\beta)})\in B$. Then B is a fuzzy (r,s)-neighborhood of $f(x_{(\alpha,\beta)})$. By (5), there is a fuzzy (r,s)-pre-semineighborhood A of $x_{(\alpha,\beta)}$ in X such that $x_{(\alpha,\beta)}\in A$ and $f(A)\subseteq B$. Thus there is a fuzzy (r,s)-pre-semiopen set C in X such that $x_{(\alpha,\beta)}\in C\subseteq A$ and hence $f(C)\subseteq f(A)\subseteq B$.

(2) \Rightarrow (6) Let A be an intuitionistic fuzzy set in X. Since $\operatorname{cl}(f(A),r,s)$ is a fuzzy (r,s)-closed set in Y, $f^{-1}(\operatorname{cl}(f(A),r,s))$ is a fuzzy (r,s)-pre-semiclosed set in X. Thus we have

$$\begin{aligned} \operatorname{pscl}(A,r,s) &\subseteq & \operatorname{pscl}(f^{-1}(f(A)),r,s) \\ &\subseteq & \operatorname{pscl}(f^{-1}(\operatorname{cl}(f(A),r,s)),r,s) \\ &= & f^{-1}(\operatorname{cl}(f(A),r,s)). \end{aligned}$$

Hence $f(\operatorname{pscl}(A,r,s)) \subseteq f(f^{-1}(\operatorname{cl}(f(A),r,s))) \subseteq \operatorname{cl}(f(A),r,s).$

(6) \Rightarrow (7) Let B be an intuitionistic fuzzy set in Y. Then $f^{-1}(B)$ is an intuitionistic fuzzy set in X. By (6), we have

$$f(\operatorname{pscl}(f^{-1}(B), r, s)) \subseteq \operatorname{cl}(f(f^{-1}(B)), r, s)$$

 $\subseteq \operatorname{cl}(B, r, s).$

Hence

$$\operatorname{pscl}(f^{-1}(B), r, s) \subseteq f^{-1}(f(\operatorname{pscl}(f^{-1}(B), r, s)))$$
$$\subseteq f^{-1}(\operatorname{cl}(B, r, s)).$$

 $(7) \Rightarrow (8)$ Let B be an intuitionistic fuzzy set in Y. By (7),

$$\operatorname{psint}(f^{-1}(B), r, s)^{c} = \operatorname{pscl}(f^{-1}(B^{c}), r, s)$$
$$\subseteq f^{-1}(\operatorname{cl}(B^{c}, r, s)).$$

Thus

$$f^{-1}(\operatorname{int}(B,r,s)) = f^{-1}(\operatorname{cl}(B^c,r,s))^c$$

$$\subseteq \operatorname{psint}(f^{-1}(B),r,s).$$

(8) \Rightarrow (1) Let B be a fuzzy (r, s)-open set in Y. By (8),

$$\begin{split} f^{-1}(B) &= f^{-1}(\operatorname{int}(B,r,s)) &\subseteq & \operatorname{psint}(f^{-1}(B),r,s) \\ &\subseteq & f^{-1}(B). \end{split}$$

Thus $f^{-1}(B) = \operatorname{psint}(f^{-1}(B), r, s)$. Hence $f^{-1}(B)$ is a fuzzy (r, s)-pre-semiopen set in X. Therefore f is fuzzy (r, s)-pre-semicontinuous. \Box

Theorem 3.8. Let $f:(X,\mathcal{T}_1,\mathcal{T}_2)\to (Y,\mathcal{U}_1,\mathcal{U}_2)$ be a bijective mapping from a SoIFTS X to a SoIFTS Y and $(r,s)\in I\otimes I$. Then the following statements are equivalent:

- (1) f is fuzzy (r, s)-pre-semicontinuous.
- (2) For each fuzzy (r, s)-closed set B in Y, $f^{-1}(B)$ is a fuzzy (r, s)-pre-semiclosed set in X.
- (3) For each intuitionistic fuzzy point $x_{(\alpha,\beta)}$ in X and each fuzzy (r,s)-open set B in Y such that $f(x_{(\alpha,\beta)}) \in B$, there is a fuzzy (r,s)-pre-semiopen set A in X such that $x_{(\alpha,\beta)} \in A$ and $f(A) \subseteq B$.
- (4) For each intuitionistic fuzzy point $x_{(\alpha,\beta)}$ in X and each fuzzy (r,s)-neighborhood B of $f(x_{(\alpha,\beta)})$, $f^{-1}(B)$ is a fuzzy (r,s)-pre-semineighborhood of $x_{(\alpha,\beta)}$.
- (5) For each intuitionistic fuzzy point $x_{(\alpha,\beta)}$ in X and each fuzzy (r,s)-neighborhood B of $f(x_{(\alpha,\beta)})$, there is a fuzzy (r,s)-pre-semineighborhood A of $x_{(\alpha,\beta)}$ such that $f(A) \subseteq B$.
- (6) $f(\operatorname{pscl}(A, r, s)) \subseteq \operatorname{cl}(f(A), r, s)$ for each intuitionistic fuzzy set A in X.
- (7) $\operatorname{pscl}(f^{-1}(B), r, s) \subseteq f^{-1}(\operatorname{cl}(B, r, s))$ for each intuitionistic fuzzy set B in Y.
- (8) $f^{-1}(\text{int}(B,r,s)) \subseteq \text{psint}(f^{-1}(B),r,s)$ for each intuitionistic fuzzy set B in Y.
- (9) $\operatorname{int}(f(A), r, s) \subseteq f(\operatorname{psint}(A, r, s))$ for each intuitionistic fuzzy set A in X.

Proof. By the above theorem, it suffices to show that (8) is equivalent to (9). Let A be an intuitionistic fuzzy set in X. Then f(A) is an intuitionistic fuzzy set in Y. Since f is one-to-one, we have

$$f^{-1}(\operatorname{int}(f(A), r, s)) \subseteq \operatorname{psint}(f^{-1}(f(A)), r, s)$$

= $\operatorname{psint}(A, r, s)$.

Since f is onto, we have

$$\operatorname{int}(f(A), r, s) = f(f^{-1}(\operatorname{int}(f(A), r, s)))$$

 $\subseteq f(\operatorname{psint}(A, r, s)).$

Conversely, let B be any intuitionistic fuzzy set in Y. Then $f^{-1}(B)$ is an intuitionistic fuzzy set in X. Since f is onto, we have

$$\operatorname{int}(B, r, s) = \operatorname{int}(f(f^{-1}(B)), r, s)$$

$$\subseteq f(\operatorname{psint}(f^{-1}(B), r, s)).$$

Since f is one-to-one, we have

$$f^{-1}(\text{int}(B, r, s)) \subseteq f^{-1}(f(\text{psint}(f^{-1}(B), r, s)))$$

= $\text{psint}(f^{-1}(B), r, s).$

Hence the theorem follows.

Theorem 3.9. Let $f:(X, \mathcal{T}_1, \mathcal{T}_2) \to (Y, \mathcal{U}_1, \mathcal{U}_2)$ be a mapping from a SoIFTS X to a SoIFTS Y and $(r, s) \in I \otimes I$. Then the following statements are equivalent:

- (1) f is a fuzzy (r, s)-pre-semiopen mapping.
- (2) $f(\text{int}(A, r, s)) \subseteq \text{psint}(f(A), r, s)$ for each intuitionistic fuzzy set A in X.
- (3) $\operatorname{int}(f^{-1}(B), r, s) \subseteq f^{-1}(\operatorname{psint}(B, r, s))$ for each intuitionistic fuzzy set B in Y.

Proof. (1) \Rightarrow (2) Let A be an intuitionistic fuzzy set in X. Then $\operatorname{int}(A,r,s)$ is a fuzzy (r,s)-open set in X. Since f is fuzzy (r,s)-pre-semiopen, $f(\operatorname{int}(A,r,s))$ is a fuzzy (r,s)-pre-semiopen in Y. Thus we have

$$f(\text{int}(A, r, s)) = \text{psint}(f(\text{int}(A, r, s)), r, s)$$

 $\subseteq \text{psint}(f(A), r, s).$

(2) \Rightarrow (3) Let B be an intuitionistic fuzzy set in Y. Then $f^{-1}(B)$ is an intuitionistic fuzzy set in X. By (2),

$$f(\operatorname{int}(f^{-1}(B), r, s)) \subseteq \operatorname{psint}(f(f^{-1}(B)), r, s)$$

 $\subseteq \operatorname{psint}(B, r, s).$

Thus we have

$$\inf(f^{-1}(B),r,s) \subseteq f^{-1}(f(\operatorname{int}(f^{-1}(B),r,s)))$$

$$\subseteq f^{-1}(\operatorname{psint}(B,r,s)).$$

 $(3) \Rightarrow (1)$ Let A be a fuzzy (r, s)-open set in X. By (3),

$$A = \operatorname{int}(A, r, s) \subseteq \operatorname{int}(f^{-1}(f(A)), r, s)$$
$$\subseteq f^{-1}(\operatorname{psint}(f(A), r, s)).$$

Thus we have

$$f(A) \subseteq f(f^{-1}(\operatorname{psint}(f(A), r, s))) \subseteq \operatorname{psint}(f(A), r, s)$$

 $\subseteq f(A).$

Thus $f(A) = \operatorname{psint}(f(A), r, s)$. Hence f(A) is a fuzzy (r, s)-pre-semiopen set in Y. Therefore f is fuzzy (r, s)-pre-semiopen. \Box

Theorem 3.10. Let $f:(X, \mathcal{T}_1, \mathcal{T}_2) \to (Y, \mathcal{U}_1, \mathcal{U}_2)$ be a mapping from a SoIFTS X to a SoIFTS Y and $(r, s) \in I \otimes I$. Then the following statements are equivalent:

- (1) f is fuzzy (r, s)-pre-semiclosed.
- (2) $\operatorname{pscl}(f(A), r, s) \subseteq f(\operatorname{cl}(A, r, s))$ for each intuitionistic fuzzy set A in X.

Proof. (1) \Rightarrow (2) Let A be an intuitionistic fuzzy set in X. Then $\operatorname{cl}(A,r,s)$ is a fuzzy (r,s)-closed set in X. Since f is (r,s)-pre-semiclosed, $f(\operatorname{cl}(A,r,s))$ is a fuzzy (r,s)-presemiclosed set in Y. Thus we have

$$pscl(f(A), r, s) \subseteq pscl(f(cl(A, r, s)), r, s)$$

= $f(cl(A, r, s))$.

(2) \Rightarrow (1) Let A be a fuzzy (r, s)-closed set in X. By (2),

$$f(A) \subseteq \operatorname{pscl}(f(A), r, s) \subseteq f(\operatorname{cl}(A, r, s)) = f(A).$$

Thus f(A) = pscl(f(A), r, s). Hence f(A) is a fuzzy (r, s)-pre-semiclosed set in Y. Therefore f is fuzzy (r, s)-pre-semiclosed. \Box

Theorem 3.11. Let $f:(X, \mathcal{T}_1, \mathcal{T}_2) \to (Y, \mathcal{U}_1, \mathcal{U}_2)$ be a bijective mapping from a SoIFTS X to a SoIFTS Y and $(r,s) \in I \otimes I$. Then the following statements are equivalent:

- (1) f is fuzzy (r, s)-pre-semiclosed.
- (2) $pscl(f(A), r, s) \subseteq f(cl(A, r, s))$ for each intuitionistic fuzzy set A in X.
- (3) $f^{-1}(\operatorname{pscl}(B,r,s)) \subseteq \operatorname{cl}(f^{-1}(B),r,s)$ for each intuitionistic fuzzy set B in Y.

Proof. By the above theorem, it suffices to show that (2) is equivalent to (3). Let B be any intuitionistic fuzzy set in Y. Then $f^{-1}(B)$ is an intuitionistic fuzzy set in X. Since f is onto, we have

$$pscl(B, r, s) = pscl(f(f^{-1}(B)), r, s)$$

$$\subset f(cl(f^{-1}(B), r, s)).$$

Since f is one-to-one, we have

$$f^{-1}(\operatorname{pscl}(B, r, s)) \subseteq f^{-1}(f(\operatorname{cl}(f^{-1}(B), r, s)))$$

= $\operatorname{cl}(f^{-1}(B), r, s).$

Conversely, let A be an intuitionistic fuzzy set in X. Then f(A) is an intuitionistic fuzzy set in Y. Since f is one-to-one, we have

$$f^{-1}(\operatorname{pscl}(f(A), r, s)) \subseteq \operatorname{cl}(f^{-1}(f(A)), r, s)$$

= $\operatorname{cl}(A, r, s)$.

Since f is onto, we have

$$\operatorname{pscl}(f(A), r, s) = f(f^{-1}(\operatorname{pscl}(f(A), r, s)))$$
$$\subseteq f(\operatorname{cl}(A, r, s)).$$

Hence the theorem follows.

References

- [1] K. T. Atanassov, *Intuitionistic fuzzy sets*, Fuzzy Sets and Systems **20** (1986), 87–96.
- [2] Shi-Zhong Bai, Fuzzy pre-semiopen sets and fuzzy pre-semicontinuity, Proc. ICIS'92 (1992), 918–920.
- [3] Shi-Zhong Bai and Wan-Liang Wang, Fuzzy non-continuous mappings and fuzzy pre-semi-separation axioms, Fuzzy Sets and Systems **94** (1998), 261–268.
- [4] C. L. Chang, *Fuzzy topological spaces*, J. Math. Anal. Appl. **24** (1968), 182–190.
- [5] K. C. Chattopadhyay, R. N. Hazra, and S. K. Samanta, *Gradation of openness: Fuzzy topology*, Fuzzy Sets and Systems **49** (1992), 237–242.
- [6] D. Çoker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems 88 (1997), 81–89.
- [7] D. Çoker and M. Demirci, On intuitionistic fuzzy points, NIFS. 1 (1995), 79–84.
- [8] _____, An introduction to intuitionistic fuzzy topological spaces in Šostak's sense, BUSEFAL 67 (1996), 67–76.
- [9] I. M. Hanafy, *Intuitionistic fuzzy functions*, International Journal of Fuzzy Logic and Intelligent Systems **3** (2003), 200–205.
- [10] Eun Pyo Lee, Semiopen sets on intuitionistic fuzzy topological spaces in Sostak's sense, J. Fuzzy Logic and Intelligent Systems 14 (2004), 234–238.
- [11] Seok Jong Lee and Youn Suk Eoum, Fuzzy r-presemineighborhoods and r-pre-semicontinuous maps, International Journal of Fuzzy Logic and Intelligent Systems 1 (2001), no. 1, 62–68.

- [12] Seok Jong Lee and Jin Tae Kim, Fuzzy (r, s)irresolute maps, International Journal of Fuzzy Logic
 and Intelligent Systems 7 (2007), no. 1, 49–57.
- [13] Seok Jong Lee, Jin Tae Kim, and Youn Suk Eoum, Fuzzy (r,s)-pre-semiopen sets, Communications in Mathematics and Mathematical Sciences 3 (2007), 39–48.
- [14] Seok Jong Lee and Eun Pyo Lee, Fuzzy (r,s)semicontinuous mappings on intuitionistic fuzzy topological spaces in Sostak's sense, J. Fuzzy Logic and
 Intelligent Systems **16** (2006), 108–112.
- [15] Seung On Lee and Eun Pyo Lee, Fuzzy(r, s)-preopen sets, International Journal of Fuzzy Logic and Intelligent Systems **5** (2005), 136–139.
- [16] A. A. Ramadan, *Smooth topological spaces*, Fuzzy Sets and Systems **48** (1992), 371–375.
- [17] A. P. Šostak, *On a fuzzy topological structure*, Suppl. Rend. Circ. Matem. Janos Palermo, Sr. II **11** (1985), 89–103.

Seok Jong Lee

Professor of Chungbuk National University Research Area: Fuzzy mathematics, Fuzzy topology, General topology

E-mail: sjl@chungbuk.ac.kr

Jin Tae Kim

Research Area: Fuzzy mathematics, Fuzzy topology, General topology

E-mail: kjtmath@hanmail.net

Youn Suk Eoum

Research Area: Fuzzy mathematics, Fuzzy topology, General topology

E-mail: setojs@orgio.net