Equivalence Relations

Yong Chan Kim¹ and Young Sun Kim²

Department of Mathematics, Kangnung National University, Gangneung, 201-702, Korea
 Department of Applied Mathematics, Pai Chai University, Dae Jeon, 302-735, Korea

Abstract

We investigate the properties of fuzzy relations and \odot -equivalence relation on a stsc quantale lattice L and a commutative cqm-lattice. In particular, fuzzy relations preserve $(*, \otimes)$ -equivalence relations where \otimes are compositions, \Rightarrow and \Leftarrow .

Key words: stsc-quantales, commutative cqm-lattice, ⊙-equivalence relations

1. Introduction and preliminaries

Quantales were introduced by Mulvey [11,12] as the non-commutative generalization of the lattice of open sets in topological spaces. Recently, quantales have arisen in an analysis of the semantics of linear logic systems developed by Girard [4], which supports part of foundation of theoretic computer science. Recently, Höhle [6-8,13] developed the algebraic structures and many valued topologies in a sense of quantales and cqm-lattices. Bělohlávek [1-3] investigate the properties of fuzzy relations and similarities on a residual lattice.

In this paper, we investigate the properties of fuzzy relations and \odot -equivalence relation on a stsc-quantale lattice and a commutative cqm-lattice. In particular, L-fuzzy relations preserve $(*, \otimes)$ -equivalence relations where \otimes are compositions, \Rightarrow and \Leftarrow .

Definition 1.1. [6-8, 11-13] A triple (L, \leq, \odot) is called a *strictly two-sided, commutative quantale* (stsc-quantale, for short) if it satisfies the following conditions:

- (Q1) $L = (L, \leq, \vee, \wedge, 1, 0)$ is a completely distributive lattice where 1 is the universal upper bound and 0 denotes the universal lower bound;
 - (Q2) (L, \odot) is a commutative semigroup;
 - (Q3) $a = a \odot 1$, for each $a \in L$;
 - $(Q4) \odot$ is distributive over arbitrary joins, i.e.

$$(\bigvee_{i\in\Gamma}a_i)\odot b=\bigvee_{i\in\Gamma}(a_i\odot b).$$

Remark 1.2. [6-8](1) A completely distributive lattice is a stsc-quantale. In particular, the unit interval $([0,1], \leq , \vee, \wedge, 0, 1)$ is a stsc-quantale.

접수일자: 2007년 6월 12일 완료일자: 2007년 11월 15일

- (2) The unit interval with a left-continuous t-norm t, $([0,1], \leq, t)$, is a stsc-quantale.
- (3) Let (L, \leq, \odot) be a stsc-quantale. For each $x, y \in L$, we define

$$x \to y = \bigvee \{z \in L \mid x \odot z \le y\}.$$

Then it satisfies Galois correspondence, that is,

$$(x \odot y) \le z \text{ iff } x \le (y \to z).$$

Lemma 1.3. [6-8,13] Let (L, \leq, \odot) be a stsc-quantale. For each $x, y, z, x_i, y_i \in L$, we have the following properties.

(1) If
$$y \le z$$
, $(x \odot y) \le (x \odot z)$, $x \to y \le x \to z$ and $z \to x \le y \to x$.

- (2) $x \odot y \le x \land y \le x \lor y$.
- (3) $x \to (\bigwedge_{i \in \Gamma} y_i) = \bigwedge_{i \in \Gamma} (x \to y_i).$
- $(4) \left(\bigvee_{i \in \Gamma} x_i \right) \to y = \bigwedge_{i \in \Gamma} (x_i \to y).$
- (5) $x \to (\bigvee_{i \in \Gamma} y_i) \ge \bigvee_{i \in \Gamma} (x \to y_i)$
- (6) $(\bigwedge_{i \in \Gamma} x_i) \to y \ge \bigvee_{i \in \Gamma} (x_i \to y).$
- (7) $(x \odot y) \rightarrow z = x \rightarrow (y \rightarrow z) = y \rightarrow (x \rightarrow z).$
- (8) $x \odot (x \to y) \le y \text{ and } x \to y \le (y \to z) \to (x \to z)$

z). (9)
$$y\odot z\leq x\to (x\odot y\odot z)$$
 and $x\odot (x\odot y\to z)\leq y\to z$.

- $(10) x \to y \le (x \odot z) \to (y \odot z).$
- (11) $x \rightarrow y = 1$ iff $x \le y$.

Definition 1.4. [1-3], [6-8,13] A function $E: X \times X \to L$ is called an \odot -equivalence relation if it satisfies the following conditions:

- (E1) E(x, x) = 1,
- (E2) E(x, y) = E(y, x),
- (E3) $E(x,y) \odot E(y,z) \leq E(x,z)$.

An \odot -equivalence relation is called an \odot -equality if E(x,y)=1 implies x=y.

2. Commutative cqm-lattices and square roots

We define commutative cqm-lattice and square roots.

Definition 2.1. [6-8,13] A triple $(L, \leq, *)$ is called a *commutative cqm-lattice* if it satisfies the following conditions:

(C1) $L = (L, \leq, \vee, \wedge, 1, 0)$ is a completely distributive lattice where 1 is the universal upper bound and 0 denotes the universal lower bound,

(C2)
$$a * (b * c) = (a * b) * c$$
 and $a * b = b * a$,

(C3)
$$a \leq a * 1$$
, for each $a \in L$,

(C4) If
$$a \leq b$$
, then $a * c \leq b * c$

Let (L, \odot) and (L, *) be a stsc-quantale and a commutative cqm-lattice. An operation * dominates \odot if it satisfies

$$(a_1 * b_1) \odot (a_2 * b_2) \le (a_1 \odot a_2) * (b_1 \odot b_2)$$

Remark 2.2. [6-8,13](1) A stsc-quantale is a commutative cqm-lattice.

(2) We define an operation $*: L \times L \rightarrow L$ as

$$a * b = \begin{cases} 1 & \text{if } a = 1 \text{ or } b = 1, \\ a \wedge b & \text{otherwise} \end{cases}$$

Then (L,\ast) is a commutative cqm-lattice but not is a stsc-quantale because

$$a \neq 0, a < a * 1 = 1$$

and, for $a < b_i \neq 1$ with $\bigvee_{i \in I} b_i = 1$, we have

$$1 = a * (\bigvee_{i \in I} b_i) \neq \bigvee_{i \in I} (a * b_i) = a.$$

For a stsc-quantale (L,\odot) with $a < b \neq 1$, * does not dominate \odot from

$$1 = (a * 1) \odot (1 * b) \not\leq (a \odot 1) * (1 \odot b) = a.$$

Definition 2.3. [6-8,13] A stsc-quantale (L, \odot) has *square* roots if there exists a unary operator $S: L \to L$ satisfying the following conditions:

(S1)
$$S(a) \odot S(a) = a$$

(S2)
$$b \odot b \le a$$
 implies $b \le S(a)$.

Example 2.4. (1) Let $x \odot y = 0 \lor (x+y-1)$ be a t-norm. Then $S(a) = \frac{a+1}{2}$. But

$$0.5 = S(0.5 \odot 0.4) \neq S(0.4) \odot S(0.5) = 0.45.$$

(2) Let
$$x \odot y = x \wedge y$$
 be a t-norm. Then $S(a) = a$.

(3) Let
$$x \odot y = xy$$
 be a t-norm. Then $S(a) = \sqrt{a}$.

(4) Let
$$x \odot y = \frac{xy}{2-x-y+xy}$$
 be a t-norm. Then

$$S(a) = \begin{cases} \frac{-1+\sqrt{2a-a^2}}{1-a} & \text{if } a \neq 1, \\ 1 & \text{if } a = 1. \end{cases}$$

(5) Let a left-continuous t-norm ⊙ defined as

$$x \odot y = \begin{cases} x \wedge y & \text{if } x + y > 1, \\ 0 & \text{otherwise.} \end{cases}$$

Then \odot has no square roots because there does not exists S(a) such that $S(a) \odot S(a) = 0.5$.

Theorem 2.5. (1) Let (L, \odot) be a stsc-quantale with square roots. Define

$$a * b = S(a) \odot S(b).$$

Then (L,*) is a commutative cqm-lattice which * dominates \odot .

(2) A t-norm \wedge dominates every t-norm \odot .

Proof. (1) Since $a \odot a \le a$ and $1 \odot 1 = 1$, we have

$$a = a \odot 1 \le S(a) \odot S(1) = a * 1.$$

For each $x_1, x_2, y_1, y_2 \in L$,

$$(x_1 \odot y_1) * (x_2 \odot y_2) = S(x_1 \odot y_1) \odot S(x_2 \odot y_2) \geq (S(x_1) \odot S(y_1)) \odot (S(x_2) \odot S(y_2)) = (x_1 * x_2) \odot (y_1 * y_2).$$

Other cases are easily proved.

(2) For each $x_1, x_2, y_1, y_2 \in [0, 1]$,

$$(x_1 \odot y_1) \wedge (x_2 \odot y_2) \geq (x_1 \wedge x_2) \odot (y_1 \wedge y_2).$$

3. Equivalence Relations

Theorem 3.1. Let (L, \odot) and (L, *) be a stsc-quantale and a commutative cqm-lattice, respectively, which * dominates \odot . We define $I: L^{X \times Y} \times L^{X \times Y} \to L$ as follows

$$I(u_1, u_2) = \bigwedge_{(x,y) \in X \times Y} \left(u_1(x,y) \to u_2(x,y) \right)$$

Then we have the following properties:

- (1) $E_*(u_1, u_2) = I(u_1, u_2) * I(u_2, u_1)$ is an \odot -equivalence relation on $L^{X \times Y}$.
- (2) If a*b=1 implies a=1 and b=1, then E_* is an \odot -equality on $L^{X\times Y}$.
 - (3) If a * 1 = a for all $a \in L$, then $E_{\odot} \leq E_* \leq E_{\wedge}$.

Proof. (1) (E1) and (E2) are easy. We prove (E3) from the following statement

$$E_*(u_1, u_2) \odot E_*(u_2, u_3)$$

$$= (I(u_1, u_2) * I(u_2, u_1)) \odot (I(u_2, u_3) * I(u_3, u_2))$$

$$\leq (I(u_1, u_2) \odot I(u_2, u_3)) * (I(u_2, u_1) \odot I(u_3, u_2))$$

$$\leq I(u_1, u_3) * I(u_3, u_1)$$

$$= E_*(u_1, u_3).$$

(2) By Lemma 1.3(11), $E_*(u_1, u_2) = I(u_1, u_2) * I(u_2, u_1) = 1$ iff $I(u_1, u_2) = I(u_2, u_1) = 1$ iff $u_1 = u_2$.

(3) Since $a \odot b = (a*1) \odot (1*b) \le (a \odot 1)*(1 \odot b) = a*b$ and $a*b \le a \land b$, it easily proved.

Example 3.2. Let $X = \{a, b\}, Y = \{c, d\}$ and $Z = \{e, f\}$ be sets and L = [0, 1] an unit interval. Define a binary operation \otimes (called Łukasiewicz conjection) on [0, 1] by

$$x \odot y = \max\{0, x + y - 1\}, \ x \rightarrow y = \min\{1 - x + y, 1\}.$$

Then $([0,1], \vee, \odot, 0, 1)$ is a stsc-quantale (ref.[6-8]). Let $u_1, u_2 \in [0,1]^{X \times Y}$ as follows:

$$u_1(a,c) = 0.7, u_1(a,d) = 0.5, u_1(b,c) = 0.8, u_1(b,d) = 0.1$$

$$u_2(a,c) = 0.4, u_2(a,d) = 0.6, u_2(b,c) = 0.5, u_2(b,d) = 0.7$$

We have

$$I(u_1, u_2) = \bigwedge_{(x,y) \in X \times Y} \left(u_1(x,y) \to u_2(x,y) \right) = 0.7,$$

$$I(u_2, u_1) = \bigwedge_{(x,y) \in X \times Y} \left(u_2(x,y) \to u_1(x,y) \right) = 0.4.$$

(1) We define $a * b = a \wedge b$. Then

$$E_*(u_1, u_2) = I(u_1, u_2) \wedge I(u_2, u_1) = 0.4$$

(2) We define $a * b = a \odot b$. Then

$$E_*(u_1, u_2) = I(u_1, u_2) \odot I(u_2, u_1) = 0.1$$

(3) We define $a*b=S(a)\odot S(b)$. Since $S(a)=\frac{a+1}{2}$, we have $a*b=S(a)\odot S(b)=\frac{a+b}{2}$. Hence

$$E_*(u_1, u_2) = I(u_1, u_2) * I(u_2, u_1)$$

$$= \frac{1}{2}(I(u_1, u_2) + I(u_2, u_1))$$

$$= 0.55$$

Since $a < a * 1 = S(a) \odot S(1) = \frac{a+1}{2}$ for $a \in [0,1)$, we have

$$0.55 = E_*(u_1, u_2) \not\leq E_{\wedge}(u_1, u_2) = 0.4.$$

In following definitions and theorems, let (L, \odot) and (L, *) be a stsc-quantale and a commutative cqm-lattice, respectively, which * dominates \odot .

Definition 3.3. For $u \in L^{X \times Y}$ and $v \in L^{Y \times Z}$, we define:

$$(u \circ v)(x, z) = \bigvee_{y \in Y} (u(x, y) \odot v(y, z))$$
$$(u \Rightarrow v)(x, z) = \bigwedge_{y \in Y} (u(x, y) \rightarrow v(y, z))$$
$$(u \Leftarrow v)(x, z) = \bigwedge_{y \in Y} (v(y, z) \rightarrow u(x, y))$$
$$(u \Leftrightarrow v)(x, z) = (u \Rightarrow v)(x, z) * (u \Leftarrow v)(x, z)$$

Definition 3.4. The relation E_* preserves $(*, \otimes)$ -equivalence relation if

$$E_*(u_1, u_2) \odot E_*(v_1, v_2) \le E_*(u_1 \otimes v_1, u_2 \otimes v_2)$$

for every $u_i \in L^{X \times Y}$ and $v_i \in L^{Y \times Z}$

Remark 3.5. We regard E_{\wedge} as the Bělohlávek's definition in [3].

Theorem 3.6. (1) The relation I holds

$$I(u_1, u_2) \le I(u_1 \circ v, u_2 \circ v)$$

$$I(v_1, v_2) \le I(u \circ v_1, u \circ v_2)$$

for every $u, u_i \in L^{X \times Y}$ and $v, v_i \in L^{Y \times Z}$

(2) The relation E_* holds

$$E_*(u_1, u_2) \leq E_*(u_1 \circ v, u_2 \circ v)$$

$$E_*(v_1, v_2) \leq E_*(u \circ v_1, u \circ v_2)$$

for every $u, u_i \in L^{X \times Y}$ and $v, v_i \in L^{Y \times Z}$

(3) The relation E_* preserves $(*, \circ)$ -equivalence relation.

Proof. (1) We show that $I(u_1, u_2) \leq I(u_1 \circ v, u_2 \circ v)$ from the following statements: for all $(x, z) \in (X, Z)$,

$$I(u_1, u_2) \leq \bigwedge_{(x,z)\in(X,Z)} (u_1 \circ v(x,z) \to u_2 \circ v(x,z))$$

$$\Leftrightarrow I(u_1,u_2) \leq (u_1 \circ v(x,z) \rightarrow u_2 \circ v(x,z))$$

$$\Leftrightarrow I(u_1, u_2) \odot (u_1 \circ v)(x, z) \leq (u_2 \circ v)(x, z)$$

$$\Leftrightarrow I(u_1, u_2) \odot \bigvee_y (u_1(x, y) \odot v(y, z)) \leq (u_2 \circ v)(x, z)$$

$$\Leftrightarrow \bigvee_{y} I(u_1, u_2) \odot (u_1(x, y) \odot v(y, z)) \leq (u_2 \circ v)(x, z)$$

On the other hand,

$$\bigvee_{y} I(u_{1}, u_{2}) \odot (u_{1}(x, y) \odot v(y, z))$$

$$\leq \bigvee_{y} \left(\bigwedge_{(x_{1}, y_{1}) \in (X, Y)} (u_{1}(x_{1}, y_{1}) \rightarrow u_{2}(x_{1}, y_{1})) \right)$$

$$\odot (u_{1}(x, y) \odot v(y, z))$$

$$\leq \bigvee_{y} \left(u_{1}(x, y) \rightarrow u_{2}(x, y) \right) \odot (u_{1}(x, y) \odot v(y, z))$$

$$\leq \bigvee_{y} (u_{2}(x, y) \odot v(y, z)) = (u_{2} \circ v)(x, z).$$

By a similar method, we have $I(v_1, v_2) \leq I(u \circ v_1, u \circ v_2)$.

(2) Since $I(u_1, u_2) \leq I(u_1 \circ v, u_2 \circ v)$ and $I(u_2, u_1) \leq I(u_2 \circ v, u_1 \circ v)$, we have

$$E_*(u_1, u_2) = I(u_1, u_2) * I(u_2, u_1) \leq I(u_1 \circ v, u_2 \circ v) * I(u_2 \circ v, u_1 \circ v) \leq E_*(u_1 \circ v, u_2 \circ v).$$

Similarly, $E_*(v_1, v_2) \leq E_*(u \circ v_1, u \circ v_2)$.

(3) By (2) and (E3), we have

$$E_*(u_1, u_2) \odot E_*(v_1, v_2) \leq E_*(u_1 \circ v_1, u_2 \circ v_1) \odot E_*(u_2 \circ v_1, u_2 \circ v_2) \leq E_*(u_1 \circ v_1, u_2 \circ v_2)$$

Example 3.7. In Example 3.2, let $v_i \in L^{Y \times Z}$ as follows:

$$v_1(c,e) = 0.6, v_1(c,f) = 0.9, v_1(d,e) = 0.7, v_1(d,f) = 0.4.$$

$$v_2(c,e) = 0.8, v_2(c,f) = 0.4, v_2(d,e) = 0.6, v_2(d,f) = 0.7.$$

$$(u_1 \circ v_1)(a,e) = 0.3, \ (u_1 \circ v_1)(a,f) = 0.6,$$

$$(u_1 \circ v_1)(b,e) = 0.4, \ (u_1 \circ v_1)(b,f) = 0.7$$

$$(u_2 \circ v_2)(a,e) = 0.2, \ (u_2 \circ v_2)(a,f) = 0.3,$$

$$(u_2 \circ v_2)(b,e) = 0.3, \ (u_2 \circ v_2)(b,f) = 0.4$$

Hence

$$0.15 = E_*(u_1, u_2) \odot E_*(v_1, v_2) \leq E_*(u_1 \circ v_1, u_2 \circ v_2) = 0.7.$$

Theorem 3.8. (1) The relation I holds

$$I(u_2, u_1) \le I(u_1 \Rightarrow v, u_2 \Rightarrow v)$$

$$I(v_1, v_2) \le I(u \Rightarrow v_1, u \Rightarrow v_2)$$

for every $u, u_i \in L^{X \times Y}$ and $v, v_i \in L^{Y \times Z}$

(2) The relation E_* holds

$$E_*(u_1, u_2) \le E_*(u_1 \Rightarrow v, u_2 \Rightarrow v)$$

$$E_*(v_1, v_2) \le E_*(u \Rightarrow v_1, u \Rightarrow v_2)$$

for every $u, u_i \in L^{X \times Y}$ and $v, v_i \in L^{Y \times Z}$

(3) The relation E_* preserves $(*, \Rightarrow)$ -equivalence relation.

Proof. (1) $I(u_2, u_1) \leq I(u_1 \Rightarrow v, u_2 \Rightarrow v)$ from the following statements: for all $(x, z) \in (X, Z), y \in Y$,

$$I(u_2, u_1) \leq \bigwedge_{(x,z)\in(X,Z)} \left((u_1 \Rightarrow v)(x,z) \to (u_2 \Rightarrow v)(x,z) \right)$$

$$\Leftrightarrow I(u_2, u_1) \leq \left((u_1 \Rightarrow v)(x,z) \to (u_2 \Rightarrow v)(x,z) \right)$$

$$\Leftrightarrow I(u_2, u_1) \odot (u_1 \Rightarrow v)(x,z) \leq (u_2 \Rightarrow v)(x,z)$$

$$\Leftrightarrow I(u_2, u_1) \odot (u_1 \Rightarrow v)(x,z) \leq \bigwedge_y (u_2(x,y) \Rightarrow v(y,z))$$

$$\Leftrightarrow u_2(x,y) \odot I(u_2, u_1) \odot (u_1 \Rightarrow v)(x,z) \leq v(y,z)$$

On the other hand, by Lemma 1.3(9),

$$u_{2}(x,y) \odot I(u_{2},u_{1}) \odot (u_{1} \Rightarrow v)(x,z)$$

$$= u_{2}(x,y) \odot \left(\bigwedge_{(x_{1},y_{1})\in(X,Y)} (u_{2}(x_{1},y_{1}) \rightarrow u_{1}(x_{1},y_{1})) \right)$$

$$\odot \left(\bigwedge_{y_{2}\in Y} \left(u_{1}(x,y_{2}) \rightarrow v(y_{2},z) \right) \right)$$

$$\leq u_{2}(x,y) \odot \left(u_{2}(x,y) \rightarrow u_{1}(x,y) \right) \odot \left(u_{1}(x,y) \rightarrow v(y,z) \right)$$

$$\leq u_{1}(x,y) \odot \left(u_{1}(x,y) \rightarrow v(y,z) \right)$$

$$\leq v(y,z)$$

Similarly, $I(v_1, v_2) \leq I(u \Rightarrow v_1, u \Rightarrow v_2)$.

(2) and (3) are similarly proved from Theorem 3.6.

Theorem 3.9. (1) The relation I holds

$$I(u_1, u_2) \le I(u_1 \Leftarrow v, u_2 \Leftarrow v)$$

$$I(v_2, v_1) \le I(u \Leftarrow v_1, u \Leftarrow v_2)$$

for every $u, u_i \in L^{X \times Y}$ and $v, v_i \in L^{Y \times Z}$

(2) The relation E_* holds

$$E_*(u_1, u_2) \le E_*(u_1 \Leftarrow v, u_2 \Leftarrow v)$$

$$E_*(v_1, v_2) \le E_*(u \Leftarrow v_1, u \Leftarrow v_2)$$

for every $u, u_i \in L^{X \times Y}$ and $v, v_i \in L^{Y \times Z}$

(3) The relation E_* preserves $(*, \Leftarrow)$ -equivalence relation.

Proof. It is similarly proved from Theorems 3.6 and 3.8.

Theorem 3.10. (1) The relation I holds

$$I(u_2, u_1) \odot (u_1 \Rightarrow v) \leq u_2 \Rightarrow v$$

$$I(u_1, u_2) \odot (u_1 \Leftarrow v) \leq u_2 \Leftarrow v$$

for every $u_i \in L^{X \times Y}$ and $v \in L^{Y \times Z}$

(2) The relation E_* holds

$$E_*(u_1, u_2) \le I(u_1 \Leftrightarrow v, u_2 \Leftrightarrow v)$$

$$E_*(v_1, v_2) \le I(u \Leftrightarrow v_1, u \Leftrightarrow v_2)$$

$$E_*(u_1, u_2) \odot E_*(v_1, v_2) \le I(u_1 \Leftrightarrow v_1, u_2 \Leftrightarrow v_2)$$

for every $u, u_i \in L^{X \times Y}$ and $v, v_i \in L^{Y \times Z}$

(3) The relation E_{\wedge} preserves $(\wedge, \Leftrightarrow)$ -equivalence relation.

Proof. (1) It is easy from Theorem 3.8 (1).

(2) $E_*(u_1, u_2) \leq I(u_1 \Leftrightarrow v, u_2 \Leftrightarrow v)$ from:

$$E_*(u_1, u_2) \odot (u_1 \Leftrightarrow v)(x, z)$$

$$= \left(I(u_2, u_1) * I(u_1, u_2)\right) \odot \left((u_1 \Rightarrow v)(x, z) * (u_1 \Leftarrow v)(x, z)\right)$$

$$\leq \left(I(u_2, u_1) \odot (u_1 \Rightarrow v)(x, z)\right) * \left(I(u_1, u_2) \odot (u_1 \Leftarrow v)(x, z)\right)$$

$$\leq \left((u_2 \Rightarrow v)(x, z)\right) * \left((u_2 \Leftarrow v)(x, z)\right)$$

$$= (u_2 \Leftrightarrow v)(x, z)$$

Similarly, $E_*(v_1, v_2) \leq I(u \Leftrightarrow v_1, u \Leftrightarrow v_2)$. It implies

$$E_*(u_1, u_2) \odot E_*(v_1, v_2)$$

$$\leq I(u_1 \Leftrightarrow v_1, u_2 \Leftrightarrow v_1) \odot I(u_2 \Leftrightarrow v_1, u_2 \Leftrightarrow v_2)$$

$$\leq I(u_1 \Leftrightarrow v_1, u_2 \Leftrightarrow v_2)$$

(3) By (2), we have

$$E_{\wedge}(u_1, u_2) \odot E_{\wedge}(v_1, v_2)$$

$$\leq I(u_1 \Leftrightarrow v_1, u_2 \Leftrightarrow v_2) \wedge I(u_2 \Leftrightarrow v_2, u_1 \Leftrightarrow v_1)$$

Example 3.11. In Examples 3.2 and 3.7, we have

$$(u_1 \Rightarrow v_1)(a, e) = 0.9, (u_1 \Rightarrow v_1)(a, f) = 0.9,$$

 $(u_1 \Rightarrow v_1)(b, e) = 0.8, (u_1 \Rightarrow v_1)(b, f) = 1$
 $(u_1 \Leftarrow v_1)(a, e) = 0.8, (u_1 \Leftarrow v_1)(a, f) = 0.8,$
 $(u_1 \Leftarrow v_1)(b, e) = 0.4, (u_1 \Leftarrow v_1)(b, f) = 0.7$

We obtain

$$(u_1\Leftrightarrow v_1)(a,e)=0.85, (u_1\Leftrightarrow v_1)(a,f)=0.85,$$

$$(u_1\Leftrightarrow v_1)(b,e)=0.6, \ (u_1\Leftrightarrow v_1)(b,f)=0.85$$
 Similarly,

$$(u_2 \Leftrightarrow v_2)(a, e) = 0.8, (u_2 \Leftrightarrow v_2)(a, f) = 0.95,$$

 $(u_2 \Leftrightarrow v_2)(b, e) = 0.8, (u_2 \Leftrightarrow v_2)(b, f) = 0.95$
 $I(u_1 \Leftrightarrow v_1, u_2 \Leftrightarrow v_2) = 0.95$

Hence

$$0.15 = E_*(u_1, u_2) \odot E_*(v_1, v_2) \leq I(u_1 \Leftrightarrow v_1, u_2 \Leftrightarrow v_2) = 0.95$$

References

- [1] R. Bělohlávek, Similarity relations in concept lattices, J. Logic and Computation 10 (6) (2000) 823-845.
- [2] R. Bělohlávek, Fuzzy equational logic, Arch. Math. Log. 41 (2002) 83-90.
- [3] R. Bělohlávek, Similarity relations and BK-relational products, Information Sciences 126 (2000) 287-295.
- [4] J.Y. Girard, *Linear logic*, Theoret. Comp. Sci. 50, 1987, 1-102.
- [5] P. Hájek, *Metamathematices of Fuzzy Logic*, Kluwer Academic Publishers, Dordrecht (1998).
- [6] U. Höhle, Many valued topology and its applications, Kluwer Academic Publisher, Boston, (2001).
- [7] U. Höhle, E. P. Klement, *Non-classical logic and their applications to fuzzy subsets*, Kluwer Academic Publisher, Boston, 1995.

- [8] U. Höhle, S. E. Rodabaugh, *Mathematics of Fuzzy Sets*, *Logic, Topology and Measure Theory*, The Handbooks of Fuzzy Sets Series, Volume 3, Kluwer Academic Publishers, Dordrecht (1999).
- [9] J. Jacas, J. Recasens, Fuzzy T-transitive relations: eigenvectors and generators, Fuzzy Sets and Systems 72 (1995) 147-154.
- [10] Liu Ying-Ming, *Projective and injective objects in the category of quantales*, J. of Pure and Applied Algebra, 176, 2002, 249-258.
- [11] C.J. Mulvey, Quantales, Suppl. Rend. Cric. Mat. Palermo Ser.II 12,1986,99-104.
- [12] C.J. Mulvey, J.W. Pelletier, On the quantisation of point, J. of Pure and Applied Algebra, 159, 2001, 231-295.
- [13] S. E. Rodabaugh, E. P. Klement, *Toplogical And Algebraic Structures In Fuzzy Sets*, The Handbook of Recent Developments in the Mathematics of Fuzzy Sets, Trends in Logic 20, Kluwer Academic Publishers, (Boston/Dordrecht/London) (2003).
- [14] E. Turunen, Mathematics Behind Fuzzy Logic, A Springer-Verlag Co., 1999.

저 자 소 개

Yong Chan Kim

He received the M.S and Ph.D. degrees in Department of Mathematics from Yonsei University, in 1984 and 1991, respectively. From 1991 to present, he is a professor in the Department of Mathematics, Kangnung University. His research interests are fuzzy topology and fuzzy logic.

Young Sun Kim

He received the M.S and Ph.D. degrees in Department of Mathematics from Yonsei University, in 1985 and 1991, respectively. From 1988 to present, he is a professor in the Department of Applied Mathematics, Pai Chai University. His research interests are fuzzy topology and fuzzy logic.