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Abstract

We investigate the properties of fuzzy relations and ®-equivalence relation on a stsc quantale lattice L and a commutative
cqm-lattice. In particular, fuzzy relations preserve (x, ®)-equivalence relations where @ are compositions, = and <.
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1. Introduction and preliminaries

Quantales were introduced by Mulvey [11,12] as the
non-commutative generalization of the lattice of open sets
in topological spaces. Recently, quantales have arisen in an
analysis of the semantics of linear logic systems developed
by Girard [4], which supports part of foundation of the-
oretic computer science. Recently, Hohle [6-8,13] devel-
oped the algebraic structures and many valued topologies
in a sense of quantales and cqm-lattices. Bélohlavek [1-3]
investigate the properties of fuzzy relations and similarities
on a residual lattice.

In this paper, we investigate the properties of fuzzy re-
lations and &-equivalence relation on a stsc-quantale lattice
and a commutative cqm-lattice. In particular, L-fuzzy re-
lations preserve (x, ®)-equivalence relations where & are
compositions, = and <. |

Definition 1.1. [6-8, 11-13] A triple (L, <,®) is called
a strictly two-sided, commutative quantale (stsc-quantale,
for short) if it satisfies the following conditions:

QD L= (L,<,V,A,1,0) is a completely distributive
lattice where 1 is the universal upper bound and 0 denotes
the universal lower bound;

(Q2) (L, ®) is a commutative semigroup;
(Q3)a=a®1,foreacha € L;
(Q4) ® 1s distributive over arbitrary joins, i.e.

(\/ a;) ©b= \/(%@b).

Remark 1.2. [6-8](1) A completely distributive lattice is
a stsc-quantale. In particular, the unit interval ([0, 1], <
, V,A,0,1) is a stsc-quantale.
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(2) The unit interval with a left-continuous t-norm ¢,
([0,1], <,¢t), is a stsc-quantale.

(3) Let (L, <, ®) be a stsc-quantale. Foreach z,y € L,
we define

xﬁy:V{zelengy}.

Then it satisfies Galois correspondence, that 18,
(xOy) <ziffz < (y — 2).

Lemma 1.3. [6-8,13] Let (L, <, ®) be a stsc-quantale. For
each x,v, z, ;, y; € L, we have the following properties.

MHy<z2,{xzo0y) <(r®z2),z—y<z— zand
z—=x<y—=T

Qzoy<zAhy<zVy.

3)x = (Nier ¥i) = Nier(® — ¥i)-

(4) (\/@‘er‘ 33?3) — Y= /\iel“(mi - y)'

Sz — (ViEP Yi) > \/iel‘(x — Y;)

©) (Nier zi) = ¥ = Vier(zi — ).

N(zoy) —mz=c—(Yy—z)=y—(r—2)

®) 20 (r—y) <yandz —>y<(y—2) — (& —

Nyoz<z—(zCy®2)andz® (z Oy — 2) <
Yy — 2.

1)z —y<(xOz2)— (YO z).

(I —-y=1iffz < y.

Definition 1.4. [1-3], [6-8,13] Afunction £ : X X X — L
is called an (-equivalence relation if it satisfies the follow-
ing conditions:

(El) E(z,x) =1,

(E2) E(z,y) = E(y, z),

(E3) E(z,y) © E(y,2) < E(z, 2).

An ®-equivalence relation is called an ®-equality if
E(z,y) = 1 implies z = y.
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2. Commutative cqm-lattices and square roots

We define commutative cqm-lattice and square roots.

Definition 2.1. [6-8,13] A triple (L, <, ) is called a com-
mutative cqm-lattice 1if 1t satisfies the following conditions:
(CH) L=(L,<,V,A,1,0) is a completely distributive
lattice where 1 is the universal upper bound and 0 denotes
the universal lower bound,
(CQax(bxc)=(axb)xcandaxb=">=x*aqa,
(C3)a<axl,foreacha € L,
CHIfa<b,thenaxc<bxc

Let (L,®) and (L, %) be a stsc-quantale and a commu-
tative cqm-lattice. An operation * dominates @ if it satisfies

(@1 % b1) ® (az xb2) < (a1 ® az) * (by ® by)

Remark 2.2. [6-8,13](1) A stsc-quantale is a commutative
cgm-lattice.
(2) We define an operation x : L X L — L as

' 1
a*b-—{ alb

Then (L, %) is a commutative cqm-lattice but not is a stsc-
quantale because

ifa=1lorb=1,
otherwise

a#0,a<axl=1

and, for a < b; # 1 with \/, _; b; = 1, we have
1 :a*(\/bi) +* \/(a*b,,;) = a.
iel iel
For a stsc-quantale (L, ®) with a < b # 1, x does not
dominate & from

l=(ax1)0(1xb) L(a®1)*x(10b) =a.

Definition 2.3. [6-8,13] A stsc-quantale (L, ®) has square
roots if there exists a unary operator S : L — L satisfying
the following conditions:

(S1) S(a) ® S(a) = a

(S2) b ® b < a implies b < S(a).

Example 2.4. (1) Letz©y =0V (z+y— 1) be a t-norm.
Then S(a) = 231 But

0.5 = S(0.5® 0.4) £ S(0.4) ® S(0.5) = 0.45.

(2) Letz ®y = x Ay be a t-norm. Then S(a) = a.
(3) Let z ©® y = zy be a t-norm. Then S(a) = 1/a.

(4)Letz ©y = 5—*%—— be a t-norm. Then
—1+v2a—aZ
S(a) — l—-a 1.fa’ ?é 1’
1 ifa=1.
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(5) Let a left-continuous t-norm & defined as

| zAy tfx+y>1,
TOY _{ 0 otherwise.

Then & has no square roots because there does not exists
S{a) such that S{a) ® S(a) = 0.5.

Theorem 2.5. (1) Let (L, ®) be a stsc-quantale with square
roots. Define

axb=S(a) ®S(b).

Then (L, %) is a commutative cqm-lattice which * domi-
nates ©.
(2) A t-norm A dominates every t-norm .

Proof. (1)Sincea ®a <aand1 ® 1 =1, we have
a=a®1<85(a)®S(1)=axl.
For each z1, 22, y1,y2 € L,

(z1 ©y1) * (22 O Y2)

= S(z1 ©y1) © S(z3 O ¥2)

> (S(x1) © S(y1)) @ (S(z2) © S(y2))
= (21 * 22) © (Y1 * ¥2).

Other cases are easily proved.
(2) For each x1, x2, 1,92 € [0, 1],

(21 O 1) A (@2 ©y2) > (1 Ax) © (Y1 Ay2).

3. Equivalence Relations

Theorem 3.1. Let (L,®) and (L, *) be a stsc-quantale
and a commutative cqm-lattice, respectively, which * dom-
inates ©. We define I : LX*Y x LX*XY — [ as follows

I{uy,ug) = /\

(x,y)eXXY

(ul(:v,y) — ug(zx, y))

Then we have the following properties:
(1) E*(’U,l, uz) = I(ul, 'U,Q) % I(’LLQ, ul) 1S an ®-

‘equivalence relation on LX*Y,

(2)Ifaxb=11impliesa = 1 and b = 1, then £, 1s an
®-equality on LX*Y,
3)Ifaxl=aforalla € L,then Ep < E, < F,.

Proof. (1) (E1) and (E2) are easy. We prove (E3) from the
following statement

(I(ul, ’U,g) * I(UQ, ul)) ® (I(Ug,’bﬂg) * I(U3, UQ))
%(Ula uz) © I(ug,uz)) * (I(uz,u1) © I(uz, uz))

I IAIA I I



(2) By Lemma 1.3(11), E.(ui,u2) = I(uy,ug) *
I(’u,g,ul) =1 iffI(’u,l,’UQ) = I(Ug,’l,lq) =1 1ff'u,1 = Us.
(3) Since a®b = (ax1)®(1*b) < (a®1)*(1Eb) = axb
and a * b < a A b, 1t easily proved.
]

Example 3.2. Let X = {a,b},Y = {c,d}and Z = {e, f}
be sets and L = [0, 1] an unit interval. Define a binary op-
eration ® (called Lukasiewicz conjection) on [0, 1] by

rOy=max{0,z+y—1}, x -y =min{l —x+y,1}.

Then (|0,1],V,®,0,1) is a stsc-quantale (ref.[6-8]). Let
uy,ug € [0,1]% %Y as follows:

(/5] (CL, C) — 07, U1 (a, d) = 05, ul(b, C) — 08, ul(b, d) = 0.1
uz(a,c) = 0.4, usz(a,d) = 0.6,uz(b,c) = 0.5, us(b,d) = 0.7

We have
I(Ul, u2) — /\ (’U,l (.’,U, 3}) — UQ(CC, y)) — 071
(z,y)eX XY
I(’LLQ,U]_) - /\ ('UQ(way) — ’u’l(may)) = 0.4.

(z,y)EX XY
(1) We defineaxb=a A b. Then

E*('u,l,'uQ) = I(’U,l,’ug) N I(UQ,U1) =04
(2) We define a x b = a © b. Then
E*(ul,'uz) = I(ul,ug) O] I(Ug,ul) = 0.1

(3) We define a x b = S(a) © S(b). Since S(a) = “*
we have a * b = S(a) © S(b) = 2. Hence

3

E.(up,us) = I(uy,ug) * I{ug, uy)
— %(I(’U;l,’UQ) + I(uz,ul))

%)

Since a < a* 1 = S(a) ® S(1) = ¢t fora € [0,1), we
have

0.55 = E*(’{Ll,’u,g) ﬁ E/\(’U,l,’UQ) = 04.

In following definitions and theorems, let (L, ®) and
(L,*) be a stsc-quantale and a commutative cqm-lattice,
respectively, which * dominates .

Definition 3.3. For u € LX*Y andv € LY *¢, we define:

(’LLO’U)(CE,_Z) — \/ (u(x,y) QU(?J:Z))

(U = ’U)(.CE, Z) = /\ (u(x,y) - U(y: Z))
yeY
(u=v)(z,2) = N (v(y,2) = u(z,y))

(u e v)(z,2) = (u=v)(x,2) * (u<=v)(x, 2)

Equivalence Relations

Definition 3.4. The relation FE, preserves
equivalence relation if

(*7®)'

Ey(u1,u2) @ Ey(vi,v2) < E(uy ® vi,u2 @ vg)
for every u; € LX*Y and v; € LY %%

Remark 3.5. We regard F, as the Bélohlavek’s definition
in [3].

Theorem 3.6. (1) The relation [ holds
I(uy,uz) < I(uy ov,ug ov)

I{vi,v2) < I(uowy,uowvs)

for every u,u; € LX*Y and v,v; € LY >4
(2) The relation F, holds

Ey(u1,u2) < Ey(uy ov,ug ov)

E.(vi,v2) < Ex(uowy,uouvs)

for every u,u; € LX*Y and v,v; € LY >4
(3) The relation F, preserves (x,0)-equivalence rela-
tion.

Proof. (1) We show that I'(u;,us) < I(ujov,ugov) from
the following statements: for all (z, z) € (X, Z),

Iu1,u2) < Agoyex,z)(ua © v(z,z) — ug ov(x, z))
& I(uy,us) < (ug ov(z,z) — uz ov(z, z))

e I(u,u2) @ (ug o v)(z, 2) < (uz ov)(zx,2)

< I(ula UZ) © \/y(ul(xa y) © 'U(y, Z)) < (uQ © U)(xa Z)
<V, I(ur, u2) © (ui(z, y) ©v(y, 2)) < (u2 o v)(z, 2)

On the other hand,

V, I(u1,u2) © (ua(z,y) © vy, 2))

<Vy ( Masamecrr (e, m) = us(as, i)
Our(z,y) ©vly, 2))

<V, (m(e,y) = w(e.y)) © (u(e,y) @ v(y.2)

<V, (2, 9) © vy, 2)) = (uz 0 v) (a2, 2),

By a similar method, we have I (v1,v2) < I(uowq,uo
?)2).

(2) Since I(uy,uz) < I{uyov,uzov)and I(ug,ur) <
I{uy o v, uy 0 v), we have

E*(U]_,UQ)

= I(uy,uz) * I(uz,u1)

< I(uy ov,ug ov) % I(ug ov,u; ov)
< F,(uy ov,ug ov).

Similarly, E* (’Ul, ’02) S E* (’LL oCV1,UC ’02).
(3) By (2) and (E3), we have

E* (ula u2) ® E* (Ula UZ)
E.(uiovy,ug 0ov1) ® Ey(ug 0 vy, ug o vg)
E,

<
< E,(uy o vy, us 0 v2)
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Example 3.7. In Example 3.2, let v; € as follows:

vi(c,e) =0.6,v1(c, f) = 0.9,v1(d,e) = 0.7,v1(d, f) = 0.4.

va(c,e) = 0.8,va(c, f) = 0.4,v3(d, e) = 0.6,v2(d, f) = 0.7.

(u1 0v1)(a,e) = 0.3, (u1 0v1)(a, f) = 0.6,

('u,l o ’Ul)(b, 6) = 0.4, (’u,l o ’Ul)(b, f) = 0.7
(u2 o v2)(a,€) = 0.2, (uz o v2)(a, f) = 0.3,
(’LLQ O ’Ug)(b, 6) — 03, (’LLQ O ’02)((), f) =0.4

Hence

0.15 ('u,l,uz) @E*(’Ul,’vg)

E,
E = 0.7.

< Fy(ug ovy,ug 0 vg)

Theorem 3.8. (1) The relation I holds
Iug,uy) < I(uy = v,ug = v)

I(’Ul,’Ug) < I(u = U, U = ’1)2)

for every u,u; € L**Y and v,v; € LY*?
(2) The relation F', holds

E*(’U,l,’ltg) < E*(’U,l = UV, Uy = ’U)

E*(’Ul,’vg) < E*(’U, = V1, U = ’Ug)

for every u, u; € LX*Y and v,v; € LY >4
(3) The relation E, preserves (*,=>)-equivalence rela-
tion.

Proof. (1) I(ug,u1) < I(uy = v,us = v) from the fol-
lowing statements: for all (z,z) € (X, Z),y €Y,

I(02,1) < Agu ez (1 = 0)(z,2) —
& I(ug,up) < ((U1 = v)(z,2) — (u2 = v)(z, Z))

& I{ug,u1) © (u1 = v)(x, 2) < (ug = v)(z, 2)

= I(UQ,’U,l) (u1 = ’U)( z) < /\y(u2(x,y) = ’U(y,Z))
= ’U,Q(LL‘, y) ® I(U’Za ul) (ul = ’U)(.’E, Z) < U(ya Z)

On the other hand, by Lemma 1.3(9),

ua(z,y) © I(ug,u1) © (ug = v)(z, 2)

= uz(x,y) ®
@(/\mey (ul(:c, y2) = v(ya, Z))

< ug(z,y) © (u2(z, y) — w(z, y)) © (Ul(w‘,y) — (y,

<ui(.9) @ (w(2,y) - v(,2)

<v(y,2)

Slmllarly, I(’Ul, UQ) < I(U = V1, U = ’02).
(2) and (3) are similarly proved from Theorem 3.6.
]
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(ug = v)(x, 2

(Ao amecxn a(@,m) = ui(z1,1)))

9)

Theorem 3.9. (1) The relation I holds
I(uy,uz) < I(ug <= v,u2 < v)

I(’Ug,’Ul) < I(’LL <= V1, U <= ’02)

LXXY LYXZ

for every u, u; € and v, v; €
(2) The relation £, holds

E.(uy,us) < E (u; < v,ug < v)

E*(’U]_,’Ug) < E*(u < V1, U <= ’02)

for every u, u; € LX*Y and v, v; € LY %4
(3) The relation E, preserves (*, <=)-equivalence rela-
tion.

Proof. 1t is similarly proved from Theorems 3.6 and 3.8.
H

Theorem 3.10. (1) The relation I holds
I{ug,u1) ® (ug = v) <ug =v

I(U]_,UQ)@(U:[ <=’U) < ug &=V

LXXY LYXZ

for every u; € and v €
(2) The relation E, holds

E,(ui,us) < I(u; & v,ug < v)

E*(’Ul,’UQ) < I(’U, ~ Vi, U < ’02)
E*(ul,U,g) O E*(’Ul,’Ug) < I(u1 < U1, Uy &= ’Uz)

for every u, u; € LX*Y andv,v; € LY %%
(3) The relation E'» preserves (A, < )-equivalence rela-
tion.

Proof. (1) It 1s easy from Theorem 3.8 (1).
)) (2) Ec(uy,uz) < I{u; © v,uy < v) from:

E.(u1,u2) ® (u1 © v)(x, 2)

I(ug,u1) * I(u1,usg ) ® ( uy = v)(x, 2) * (u; < v)(x, z))
Iz, 1) © (1 = v)(2,2) ) * (11, u2) © (1 = v) (w5, 2) )

(12 = 0)(z,2) ) * (w2 = v)(z,2))

(ug & v)(x, 2)

IA I

IA

Similarly, F,(v1,v2) < I(u < v1,u < vg). It implies

E.(u1,uz) © Ey(v1,v2)
< I('u,1 & VU1, Ug & ’Ul) @I(’UQ < V1, Uy & ’02)
< I{uy & v1,us & v9)

(3) By (2), we have

En(u1,uz) © Ex(v1,v2)
< I(u1 = U1, Uy <=>’UQ) /\I(’UQ < V2, U1 <= ’U1)

[l



Example 3.11. In Examples 3.2 and 3.7, we have

(u1 = v1)(a,e) = 0.9, (u; = v1)(a, f) = 0.9,

We obtain
(u1 & vy)(a,e) = 0.85, (u1 < vi)(a, f) = 0.85,

(u1 ~ ’Ul)(b, 8) = (.6, (U1 <~ ’Ul)(b, f) = 0.8

Similarly,
(ug & v9)(a,e) = 0.8, (uy & v3)(a, f) = 0.95,

(us < v2) (b, €) = 0.8, (us < v3)(b, ) = 0.95
I(Ul <~ V1, Uy <= ’Ug) = 0.95

Hence

0.15 E*(Ul,’LLQ) @ E*(’Ul,’vg)

< I(Ul = V1,Us = ’Ug) = 0.95
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