DOI QR코드

DOI QR Code

퍼지를 이용한 BLDC 모터의 상태천이 고장진단

State Transition Fault Diagnosis in Brushless DC Motor Based on Fuzzy System

  • 발행 : 2008.06.25

초록

본 연구는 BLDC 모터의 동일모델간 다른 정상범위로 인해 발생하는 상태판단 문제를 해결해 진단 효율을 높이는데 있다. 모터내 고유한 외란은 동일한 상태임에도 정상상태 범위가 다르게 계측되는 원인이다. 이러한 문제는 진단모델 설계시 모터 상태를 구별하기 위한 특징변수와 상태판단 기준값을 결정하기 어렵게 한다. 실험은 다수의 BLDC 모터들에서 신호를 계측하기 위한 시스템을 구성하고, 모터별 다른 정상범위를 관찰하고 고장들을 상태별로 분류하였다. 계측한 신호는 제안한 상태천이모델을 사용하여 모터 고유외란의 영향을 최소화하였다. 제안한 상태천이모델은 동일 모터모델에서 발생하는 다른 정상상태 특성을 줄여 고장 검출효율을 향상시키는 방법이다. 본 연구의 실험 결과, 고장 검출율이 향상되었으며 제안한 상태천이모델이 진단에서 유용한 방법임을 알 수 있었다.

In this paper we proposed a model of a fault diagnosis expert system with high reliability to compare identical well-functioning motors. The purpose of the survey was to determine if any differences exit among these identical motors and to identify exactly what these differences were, if in fact they were found. Using measured data for many identical brushless dc motors, this study attempted to find out whether normal and fault can be classified by each other. Measured data was analyzed using the State Transition Model (STM). Based on a proposed STM method, the effect of a different normal state is minimized and the detection of fault is improved in identical motor system. Experimental results are presented to prove that STM method could be a useful tool for diagnosing the condition of identical BLDE motors.

키워드

참고문헌

  1. 박진수, 김연태, 배현, 김성신, "복합고장을 가지는 농형유도전동기의 모델링과 고장진단," Proceedings of KFIS Autumn Conference 2006, vol. 16, no. 2, 2006
  2. Xiang-Qun, Hong-Yue Zhang, Jun Liu, Jing Yang, "Fault Detection and Diagnosis of Permanent Magnet DC Motor Based on Parameter Estimation and Neural Network," IEEE Transactions on Industrial Electronics, vol. 47, no. 5, pp. 1021-1030, Oct. 2000 https://doi.org/10.1109/41.873210
  3. Thomson, W.T.; Fenger, M., "Current signature analysis to detect induction motor faults," IEEE Industry Applications Magazine, vol. 7, pp. 26-34, Aug. 2001
  4. Sang-Hyuk Lee, Seong-Pyo Cheon, Yountae Kim, Sungshin Kim, "Fourier and Wavelet Transformations for the Fault Detection of Induction Motor with Stator Current," Lecture Notes in Computer Science, vol. 4114, pp. 557-569, Aug. 2006
  5. Hyeon Bae, Sungshin Kim, Yountae Kim, Sang-Hyuk Lee, "Application of Time-Series Data Mining for Fault Diagnosis of Induction Motors," Lecture Notes in Computer Science, vol. 3483, pp. 1085-1094, May 2005
  6. Achmad Widodo, Bo-Suk Yang, Tian Han, "Combination of independent component analysis and support vector machines for intelligent faults diagnosis of induction motors," A. Widodo et al. / Expert Systems with Applications, vol. 32, pp. 299-312, 2007 https://doi.org/10.1016/j.eswa.2005.11.031
  7. YE Zhongming and WU Bin, "A Review on Induction Motor Online Fault Diagnosis," Power Electronics and Motion Control Conference, vol. 3, pp. 1353-1358, Aug. 2000
  8. Electro-Craft Corporation, DC MOTORS SPEED CONTROLS SERVO SYSTEM, 1978
  9. Olaf Moseler and Rolf Isermann, "Application of Model-Based Fault Detection to a Brushless DC Motor," IEEE Transactions on Industrial Electronics, VOL. 47, NO. 5, Oct. 2000
  10. ACS Motion Control (2003). SPiiPlus Setup Guide revision 4.20
  11. Jahns T.M. and W.L. Soong, "Pulsating torque minimization techniques for permanent magnet AC motor drive a review," IEEE Transactions on Industrial Electronics, vol. 43, pp. 321-330, Apr. 1996 https://doi.org/10.1109/41.491356
  12. Hanselman, D., "Minimum torque ripple, maximum efficiency excitation of brushless permanent magnet motors," IEEE Transactions on Industrial Electronics, vol. 41, pp. 292-300, June 1994 https://doi.org/10.1109/41.293899