DOI QR코드

DOI QR Code

중성자 회절법에 의한 Ni-W 합금 소결체의 격자상수 측정

Estimation of a Lattice Parameter of Sintered Ni-W Alloy Rods by a Neutron Diffraction Method

  • 김찬중 (한국원자력연구원 중성자과학연구부) ;
  • 김민우 (한국원자력연구원 중성자과학연구부) ;
  • 박순동 (한국원자력연구원 중성자과학연구부) ;
  • 전병혁 (한국원자력연구원 중성자과학연구부) ;
  • 장석원 (한국원자력연구원 중성자과학연구부) ;
  • 성백석 (한국원자력연구원 중성자과학연구부)
  • Kim, Chan-Joong (Neutron Science Division, Korea Atomic Energy Research Institute) ;
  • Kim, Min-Woon (Neutron Science Division, Korea Atomic Energy Research Institute) ;
  • Park, Soon-Dong (Neutron Science Division, Korea Atomic Energy Research Institute) ;
  • Jun, Byung-Hyuk (Neutron Science Division, Korea Atomic Energy Research Institute) ;
  • Jang, Serk-Won (Neutron Science Division, Korea Atomic Energy Research Institute) ;
  • Seong, Baek-Seok (Neutron Science Division, Korea Atomic Energy Research Institute)
  • 발행 : 2008.06.28

초록

Ni-W(1-5 at.%) alloy rods were made by powder metallurgy process including powder mixing, compacting and subsequent sintering. Ni and W powder of appropriate compositions were mixed by a ball milling and isostatically pressed in a rubber mold into a rod. The compacted rods were sintered at $1000^{\circ}C-1150^{\circ}C$ at a reduced atmosphere for densification. The lattice parameters of Ni-W alloys were estimated by a high resolution neutron powder diffractometer. All sintered rods were found to have a face centered cubic structure without any impurity phase, but the diffraction peak locations were linearly shifted with increasing W content. The lattice parameter of a pure Ni rod was $3.5238{\AA}$ which is consistent with the value reported in JCPDS data. The lattice parameter of N-W alloy rods increased by $0.004{\AA}$ for 1 atomic % of W, which indicates the formation of a Ni-W solid solution due to the substitution of nickel atoms by tungsten atoms of larger size.

키워드

참고문헌

  1. D.-W. Lee, B-K Ji, J. Joo and C.-J Kim: J. Korean Powder Metall. Inst., 10 (2003) 241 (Korean) https://doi.org/10.4150/KPMI.2003.10.4.241
  2. A. Goyal, D. P. Norton, J. D. Budai, M. Paranthaman, E. D. Specht, D. M. Kroeger, D. K. Christen, Q. He, B. Saffian, F. A. List, D. F. Lee, P. M. Martin, C. E. Klabunde, E. Hatfield and V. K. Silkka: Appl. Phys. Lett., 69 (1996) 1975 https://doi.org/10.1063/1.117179
  3. B. De Boer, J. Eickemeyer, N. Reger, L. Fernandez G.-R., J. Richter, B. Holzapfel, L. Schultz, W. Prusseit and P. Berberich: Acta mater., 49 (2001) 1421 https://doi.org/10.1016/S1359-6454(01)00041-6
  4. R. Nast, B. Obst and W. Goldacker: Physica C, 372-376 (2002) 733 https://doi.org/10.1016/S0921-4534(02)00894-8
  5. J. R. Thompson, A. Goyal, D. K. Christen and D. M. Kroeger: Physica C, 370 (2002) 169 https://doi.org/10.1016/S0921-4534(01)00937-6
  6. E. Varesi, V. Boffa, G. Celentano, L. Ciontea, F. Fabbri, V. Galluzzi, U. Gambardella, A. Mancini, T. Petrisor, A. Rufoloni and A. Vannozzi: Physica C, 372-376 (2002) 763 https://doi.org/10.1016/S0921-4534(02)00901-2
  7. T. Petrisor, V. Boffa, G. Celentano, L. Ciontea, F. Fabbri, V. Galluzzi, U. Gambardella, A. Mancini, A. Rufoloni and E. Varesi: Physica C, 377 (2002) 135 https://doi.org/10.1016/S0921-4534(01)01128-5
  8. J. Eickemeyer, D. Selbmann, R. Opitz, H. Wendrock, E. Maher, U. Miller and W. Prusseit: Physica C, 372-376 (2002) 814 https://doi.org/10.1016/S0921-4534(02)00914-0
  9. 'Smithells Metal Reference Book': Eric A. Branders(Ed.), Butterworths & Co Ltd, (1983) 11
  10. M.-W. Kim, B.-H. Jun, B.-K. Ji, K.-D. Jung and C.-J. Kim: J. Korean Powder. Metall. Inst., 14 (2007) 13 (Korean) https://doi.org/10.4150/KPMI.2007.14.1.013
  11. B. D. Cullity: 'Elements of X-ray Diffraction'(2nd Ed.), Addison Wesley Pub. Co. Ltd., London (1978) 87
  12. JCPDS No. 04-0850 1997 JCPDS-International Centre for Diffraction Data
  13. G. Gonzalez, A. Sagarzazu, R. Villalba and J. Ochoa: J. Alloys and Compounds, 434-435 (2007) 525 https://doi.org/10.1016/j.jallcom.2006.08.155
  14. A. O. Aning, Z. Wanh and T. H. Courtney: Acta metall. mater., 41 (1993) 165 https://doi.org/10.1016/0956-7151(93)90348-V