DOI QR코드

DOI QR Code

Hydrogen Storage Properties of Carbon Nanotube Composites

탄소나노튜브 복합재의 수소저장특성

  • Ahn, Jung-Ho (Department of Materials Engineering, Andong National University) ;
  • Jang, Min-Kyu (Department of Materials Engineering, Andong National University)
  • 안중호 (안동대학교 신소재공학부) ;
  • 장민규 (안동대학교 신소재공학부)
  • Published : 2008.06.28

Abstract

Carbon nanotube (CNT)/$Mg_2Ni$ composites were synthesized to enhance the hydrogen storage properties. The emphasis was made on the effect of different shortening methods of CNTs on the open-tip structure and the resulting properties. The use of open CNTs as a starting material resulted in an enhanced hydrogen properties of CNT/$Mg_2Ni$ composites. Among the employed methods for the shortening of CNTs, wet milling using ethanol was the most efficient, while ultrasonic acid treatment or thermal decomposition resulted in a less hydrogen storage capacity.

Keywords

References

  1. S. Niyogi, M. A. Hamon, H. Hu, B. Zhao, P. Bhowmik, R. Sen, M. E. Itkis and R. C. Haddon: Acc. Chemical Research, 35 (2002) 12 https://doi.org/10.1021/ar0100374
  2. P. M. Ajayan and O. Z. Zhou: Carbon Nanotubes, 80 (2001) 391 https://doi.org/10.1007/3-540-39947-X_14
  3. M. Damnjanovic, I. Milosevic, T. Vukovic and R. Sredanovic: Phys. Rev. B, 60 (1999) 2728 https://doi.org/10.1103/PhysRevB.60.2728
  4. J.-P. Salvetat-Delmotte and A. Rubio: Carbon, 40 (2002) 1729 https://doi.org/10.1016/S0008-6223(02)00012-X
  5. C. Zhou, K. Jing, E. Yenilmez and H. Dai: Science, 290 (2000) 1552 https://doi.org/10.1126/science.290.5496.1552
  6. H. W. Postma, T. Teepen, Z. Yao, M. Grifoni and C. Dekker: Science, 293 (2001) 76 https://doi.org/10.1126/science.1061797
  7. A. Bachtold, P. Hadley, T. Nakanishi and C. Dekker: Science, 294 (2001) 1317 https://doi.org/10.1126/science.1065824
  8. G. L. Che, B. B. Lakshmi, C. R., Martin and F. R. Fisher: Langmuir, 15 (1999) 750 https://doi.org/10.1021/la980663i
  9. A. Chambers, C. Park, R. T. K. Baker and N. M. Rodriguez: J. Phys. Chem. B, 122 (1998) 4253
  10. J. F. Colomer, C. Stephan, S. Lefrant, G. Van Tendeloo, I. Willems, Z. Konya, A. Fonseca, Ch. Laurent and J. B. Nagy: Chem. Phys. Lett., 317 (2000) 83 https://doi.org/10.1016/S0009-2614(99)01338-X
  11. J. M. Bonard, H. Kind, T. Stockli and L. O. Nilsson: Solid-State Electron., 45 (2001) 893 https://doi.org/10.1016/S0038-1101(00)00213-6
  12. F. Liu, X. Zhang, J. Cheng, J. Tu, F. Kong, W. Huang and C. Chen: Carbon, 41 (2003) 2527 https://doi.org/10.1016/S0008-6223(03)00302-6
  13. A. Zuttel, P. Sudan, P. Mauron, T. Kiyobayashi, C. Emmenegger and L. Schlapbach: Int. J. of Hydrogen Energy, 27 (2002) 203 https://doi.org/10.1016/S0360-3199(01)00108-2
  14. A.C. Dillon, K. E. H. Gilbet, P. A. Parilla, J. L. Alleman, G. L. Hornyak, K. M. Jones and M. J. Heben: C080401 (2002) 3393
  15. M. Hirscher, M. Becher, M. Haluska, A. Quintel, V. Skakalova, Y. M. Choi, U. Dettlaff-Weglikowska and S. Roth and J. Fink: J. of Alloys and Compounds, 330 (2002) 654 https://doi.org/10.1016/S0925-8388(01)01643-7
  16. J. J. Reiley and R. H. Wiswall: Inorg. Chem., 6 (1967) 2220 https://doi.org/10.1021/ic50058a020
  17. G. Friedlmeier: Fortschr. Ber. VDI, 5 (1997) 1
  18. C. Iwakura, R. Shinya, K. Miyanohara, S. Nohara and H. Inoue: Electrochem. Acta, 46(2001) 2781 https://doi.org/10.1016/S0013-4686(01)00513-8
  19. H. Inoue, T. Ueda, S. Nohara, N. Fujita and C. Iwakura: J. Electrochem., Acta, 43 (1998) 2215 https://doi.org/10.1016/S0013-4686(97)10110-4
  20. Z. S. Wonsky: Int. Mater. Rev., 46 (2001) 1 https://doi.org/10.1179/095066001101528394
  21. X. Xiao, X. Wang, L. Gao, L. Wang and C. Chen: J. Of Alloys & Compounds, 413 (2006) 312 https://doi.org/10.1016/j.jallcom.2005.06.064
  22. X. H. Chen, H. S. Yang, G. T. Wu, M. Wang, F. M. Deng, X. B. Zhang and W. Z. Li: J. of Crystal Growth, 218 (2000) 57 https://doi.org/10.1016/S0022-0248(00)00486-3
  23. Y. Wang, J. Wu and F. Wei: Carbon, 41 (2003) 2939 https://doi.org/10.1016/S0008-6223(03)00390-7