PAPR과 ICI의 동시 저감을 위한 개선형 CI/OFDM 시스템 설계와 성능 평가

Design and Performance Evaluation of an Advanced CI/OFDM System for the Reduction of PAPR and ICI

  • 유흥균 (충북대학교 전기전자컴퓨터공학부)
  • 발행 : 2008.06.30

초록

OFDM(orthogonal frequency division multiplexing)은 PAPR(peak-to-average power ratio) 문제를 가지고 있다. 이런 PAPR 문제를 해결하는 CI/OFDM(carrier interferometry OFDM) 시스템 등이 제시되었으나, 이것은 위상 잡음이 존재할 경우 CI 위상 오프셋 불일치로 인해 ICI(inter channel interference) 문제가 발생한다. 이 논문에서는 낮은 PAPR을 유지하면서 ICI를 저감하기 위한 A-CI/OFDM(advanced-CI/OFDM)을 제안한다. 이 방식은 CI 확산 과정에서 CI 위상 코드들이 조밀하게 갖는 위상 옵셋에 마진을 줌으로써 국부 발진기에서 발생하는 위상 잡음에 대한 성능 저하를 감소시키면서, 낮은 PAPR을 유지한다. 위상 잡음에 대한 영향을 줄이기 위해 제안된 방식은 종전의 CI/OFDM보다 PAPR 성능 면에서 손실이 발생하는데, 이를 방지하기 위하여 PAPR 저감 방법 중 PTS를 이 시스템에 적용한다. 그러므로 제안한 방식은 기존의 CI/OFDM 시스템보다 위상 잡음의 영향을 저감하고 PAPR 측면에서도 이득이 있어 전체적인 BER 성능을 향상 시킨다. 시뮬레이션을 통해서 일반 OFDM과 CI/OFDM, A-CI/OFDM 시스템의 성능을 비교한다.

OFDM (orthogonal frequency division multiplexing) has serious problem of high PAPR (peak-to-average power ratio). Recently, CI/OFDM (carrier interferometry OFDM) system has been proposed for the low PAPR. However, CI/OFDM system shows another problem of ICI because of phase offset mismatch due to the phase noise. In this paper, to simultaneously reduce the PAPR and ICI effects, we propose an A-CI/OFDM (advanced-CT/OFDM). This method improves the BER performance by use of the margin of phase offset at CI codes. Propose system to reduce the effect the phase noise, even though it shows a little bit higher PAPR than conventional CI/OFDM, so we apply the PTS among the PAPR reduction techniques to proposed system to mitigate this problem. Therefore, it improves the total BER performance because the proposed method can decrease the effect of phase noise and get the gain in PAPR reduction performance. From the simulation results, we can show the performance comparison between the conventional OFDM, CI/OFDM and A-CI/OFDM.

키워드

참고문헌

  1. R. van Nee and R. Prasad. OFDM for Wireless Multimedia Communications. Norwood, MA: Artech House, 2000
  2. H. Ochiai and H. Imai, 'Performance analysis of deliberately clipped OFDM signals,' IEEE Trans. Commun., Vol.50, pp.89-101, Jan. 2002
  3. X. Li and L. J. Cimini, Jr., 'Effect of Clipping and Filtering on the Performance of OFDM,' IEEE Commun. Lett., Vol.2, Issue 5, pp.131-133, May 1998 https://doi.org/10.1109/4234.673657
  4. K. Patterson, 'Generalized Reed-Muller Codes and Power Control in OFDM Modulation,' IEEE Trans. Info. Theory, Vol.46, Issue 1, pp.104-120, Jan. 2000 https://doi.org/10.1109/18.817512
  5. L. J. Cimini, Jr., and N. R. Sollenberger, 'Peakto- average power ratio reduction of an OFDM signal using partial transmit sequences,' IEEE Commun. Lett., Vol.4, pp.86-88, Mar. 2000 https://doi.org/10.1109/4234.831033
  6. L. J. Cimini, Jr., and N. R. Sollenberger, 'Peak-to-average power ratio reduction of an OFDM signal using partial transmit sequences with embedded side information,' Proc. IEEE GLOBECOM, Vol.2, pp.746-750. Nov. 2000
  7. H. G. Ryu, K. J. Youn, 'A new PAPR reduction scheme: SPW (subblock phase weighting),' IEEE Transactions on Consumer Electronics, Vol.48, Issue 1, pp.81-89, Feb. 2002 https://doi.org/10.1109/TCE.2002.1010095
  8. Claus Muschallik, 'Influence of RF Oscillators on an OFDM signal,' IEEE Transactions on Consumer Electronics, Vol.41, no.3, pp.592-603, Aug. 1995 https://doi.org/10.1109/30.468090
  9. Ana Garcia Armada, 'Understanding the effects of phase noise in OFDM,' IEEE Transactions on Broadcasting, Vol.47, no.2, pp.153-159, June 2001 https://doi.org/10.1109/11.948268
  10. H. G. Ryu and H. S. Lee, 'Analysis and minimization of phase noise of the digital hybrid PLL frequency synthesizer,' IEEE Transactions on Consumer Electronics, Vol.48, no.2, May 2002
  11. H. G. Ryu and Y. S. Li, 'Phase noise analysis of the OFDM communication system by the standard frequency deviation,' IEEE Transactions on Consumer Electronics, Vol.49, no.1, pp.41-47, Feb. 2003 https://doi.org/10.1109/TCE.2003.1205454
  12. Armstrong, 'Analysis of new and existing methods of reducing intercarrier interference due to carrier frequency offset in OFDM,' IEEE Transactions on Communications, Vol.47, no.3, pp.365 369, Mar. 1999 https://doi.org/10.1109/26.752816
  13. D. A Wiegandt and C. R. Nassar, 'Highperformance OFDM via carrier interferometry,' in Proc. IEEE Int. Conf. 3rd-Generation Wireless and Beyond, 3G wireless'01, San Francisco, CA, 2001, pp.404-409
  14. D. A Wiegandt and C. R. Nassar, and Z. Wu, 'Overcoming peak-to-average power ratio issues in OFDM via carrier interferometry codes,' in Proc. IEEE Vehicular Technology Conf., Atlantic City, NJ, 2001, pp.660-663
  15. B. Natarajan, C. Nassar, S. Shattil, M. Michelini, and Z. Wu, 'High performance MC-CDMA via carrier interferometry codes,' IEEE Trans. Veh. Technol., Vol.50, pp.1344-1353, Nov. 2001 https://doi.org/10.1109/25.966567
  16. C. Rapp, 'Effects of HPA-nonlinearity on a 4-DPSK/OFDM-signal for a digital sound broadcasting system,' Proc.2nd European Conference on a Satellite Communications, pp.179-184, Oct. 1991