The Performance Analysis for the New Architecture of DWDM Network

  • 이동선 (광운대학교 정보제어공학과)
  • Published : 2008.06.30

Abstract

Aggregate bandwidth required by the internet is expected to be explosively increased. To meet this anticipated need, an ultra high speed internet backbone transport network, capable of supporting up to a Tbps traffic capacity, is required. this thesis examines, through computer simulation and modeling, the technological requirements and assesses the performance analysis and feasibility for implementing ultra-high speed NGI backbone transport network fabric based on WDM technology. The study results are that C/L band EDFA spectral gains for ultra high speed DWDM have been improved from 2.61dB/1.5386dB to 0.03dB/0.096dB by proposed architecture.

Keywords

References

  1. Jane M Simmons and Adel Saleh, "Optical Regional Access Network (Oran) Project," OFC'99, Paper WK1-1, 1999
  2. F. Elrefaie, "Multi-Wavelength Survivable Ring Network Architectures", ICC '93, Paper48, pp. 23-26, May 1993
  3. M.Rochette, "Gain Equalization of Edfas with Brag Gratings", IEEE Phostonics Technology Letters, May 1999
  4. Yung-Kuang Chen, Chien-Chung Lee, "Fiber Bragg Grating- Based Large Non-Blocking Multiwavelength Cross- Connects", J. Lightwave Technology, Vol.16, pp.1746-1756, Oct. 1998 https://doi.org/10.1109/50.721061
  5. T. Terahara, T. Naito, N. Shimojob, T. Tanaka, T. Chikama, and M. Suyama, "0.7Tbps (66${\times}$ 10.66 Gbps) WDM Transmission Over 2,212 Km using Broadband, High-Power EDFAs with Pump Reflector", Electron. Lett., Vol.34, No.10, pp.1001-1002, 1998 https://doi.org/10.1049/el:19980733
  6. M. Yamada, O. Hirotaka, T. Kanamori, T. Sakamoto, Y. Ohishi, And S. Sudo, "A Low Noise and Gain-Flattened Amplifier Composed of a Silica-Based and a Fluoride-Based Er3+ Doped Fiber Amplifier in a Cascade Configuration", IEEE Photon. Technology Lett., Vol.8, pp.620-622, May 1996 https://doi.org/10.1109/68.491558
  7. H. S. Kim, S. H. Yun, H. K. Kim, N. Park, and B. Y. Kim, "Actively Gain-Flattened Erbium- Doped Fiber Amplifier over 35 nm by using All-Fiber Acoustooptic Tunable Filters", IEEE Photon. Technol Lett., Vol.10, pp.790-792, June 1998 https://doi.org/10.1109/68.681485
  8. Y. Sun, J. B. Judkins, A. K. Strivastava, L. Garett, J. L. Zyskind, 3. W. Sulhoff, C. Wolf, R. M. Derosier, A. H. Gnauck, R. W. Tkaeh, J. Zhou, R. P. Espindola, A. M. Vengsarkar, and A. R. Chraplyvy, "Transmission of 32-WDM 10-Gbps Channels Over 640 Km using Broad- Band, Gain-Flattened Erbium-Doped Silica Fiber Amplifiers", IEEE Photon. Technology Lett., Vol.9, pp.1652-1654, Dec. 1997 https://doi.org/10.1109/68.643301
  9. R. Kashyap, R. Wyatt, and P. F. Mckee, "Wavelength Flattened Saturated Erbium Amplifier using Multiple Side-Tap Bragg Gratings", Electron. Lett., Vol. 29, No.11, pp.1025-1026, 1993 https://doi.org/10.1049/el:19930685
  10. O. Gautoeron, P. Sansonetti, G. Bassier, and I. Riant, "Optical Gain Equalization with Short Period Fiber Gratings", In Tech. Dig. ECOC'9., Edinburgh, Scotland, U.K., 1997
  11. A. R. Giles and E. Desurvire, "Modeling Erbium- Doped Fiber Amplifiers", J. Lightwave Technology, Vol. 9, pp.271-283, 1991 https://doi.org/10.1109/50.65886
  12. Dietrich Marcuse, "Derivation of Analytical Expressions for the Bit-Error Probability in Lightwave Systems with Optical Amplifiers", J. Lighwave Technology, Vol.8, No.12, pp.1816-1823, 1990 https://doi.org/10.1109/50.62876
  13. J. Pan, M. A. Ali, A. Elrefaie, and R. Wagner, "Multiwavelength Fiber Amplifier Cascades with Equalization Employing Mach-Zehnder Optical Filter", IEEE Photon. Lett., Vol.7, pp.1501-1503, Dec. 1995 https://doi.org/10.1109/68.477295
  14. Ezhan Karasan, and Ender Ayanoglu, "Performance of WDM Transport Networks", IEEE Journal on Selected Areas in Communications, Vol.16, No.7. Sep. 1998