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1. Introduction

The vehicle routing problem (VRP) has a long history
in the field of operations research. Since Clark and Wright
[5] proposed a “savings algorithm solution method, a num-
ber of methods have been developed to tackle the pro-
blem. Vehicle routing problem with time windows (VRPTW)
as well as VRP are known as being NP-complete, i.c., an
optimal solution of the problem cannot be obtained in a
reasonable time. Although there have been significant
works [9] toward for exact algorithms, almost all methods
have been based on heuristics to solve real life problems.
During the past decades, solution methods using meta-heu-
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ristics have received much attention. Tabu search (TS) [15],
simulated annealing (SA) [12], and genetic algorithm (GA)
[4] have been applied to VRP. While TS and SA have
been successfully applied to VRP and VRPTW, GA has
been considered inferior to other meta-heuristics. The main
disadvantage of GA in VRP and VRPTW 1is its poor ca-
pability for chromosome representatton of a solution. Path -
representation with delimiters and vehicle number repre-
sentation will be natural since these explicit representations
are directly decoded to a solution. A chromosome exactly
represents the routes and sequence of node numbers in a
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route. However, maintaining the valid chromosomes which
represent feasible solutions for satisfying vehicle capacity
and time window constraints is not an easy task. To main-
tain feasibility in these chromosomes, a special procedure
in constructing initial populations and genetic operators is
required. These limitations hinder GA from taking full ad-
vantage of intrinsic GA features such as randomness and
diversity. It is not surprising that recent papers show that
GA can compete with other meta-heuristics. Its chromosome
representations and decoding procedures are different from
those of standard GA. Instead of explicit representation, it
adopts implicit representations which are then interpreted to
create feasible solutions through heuristics or specified op-
timization methods.

In Prins [14], a chromosome is represented by a se-
quence of node numbers to be visited. Since there is no
delimiter in the chromosome representation, the shortest
path method is used to interpret for each route of veh-
icles. In constructing a network to be solved by the short-

est path method,

constraints on vehicle

capacity are
considered. Therefore, their interpretation can be catego-
rized as a route-first, cluster-second method. In Tan et al.
[17], a chromosome represents a node sequence to be in-
serted into each route. Node numbers in a chromosome
are selected one by one, and subsequently attached (rather
than inserted) to each route. If no available route is found,
a new route is created. In these GAs, standard crossover
operators and mutation operators for permutation-based chr-
omosome representation can be applied.

By recognizing that proper explicit chromosome repre-
sentation 1s difficult, some authors have used the concept
of solution individual instead of the chromosome in GA.
According to Berger and Barkaoui {2, 3], a solution indi-
vidual i1s a solution itself consisting of routes and a cus-
tomer sequence in each route. To construct an initial pop-
ulation, a sequential insertion heuristic is applied. Custo-
mers are inserted at random in arbitrarily chosen insertion
positions within routes. Then, re-initialization using another
insertion procedure proposed by Liu and Shen [10] is used
to improve the initial solution. Since no chromosome rep-
resentations are employed, standard crossover and mutation
operators do not apply. Instead, special heuristics are de-
vised to create offspring and mutants.

Even though any of the GA methods, whether interpr-
etation-based or solution individual-based, can improve the

performance, the solution quality of GA alone is not sa-

tisfactory. GA appears to have the advantage of searching
for a diverse solution space with proper genetic operators.
However, it 1s difficult to reach a near optimal solution.
To improve the solution quality, many studies incorporate
local optimal procedure into GA. Several local search me-
thods are used as mutation operators in the studies [2, 3,
13]. A local search including a A-interchange method [13]
is applied to the solution generated by the GA process 1n
the studies [1, 17]. It should be noted that these methods
result in a tightly coupled hybrid GA in that improved
solutions by local search heuristics are encoded back to
the chromosome format, which subsequently replaces the
original one.

The main purpose of this paper is to illustrate the ap-
plication of GA to VRPTW. To be effective and efficient,
a standard GA must be modified and hybridized as pre-
viously stated. However, a standard representation of chro-
mosomes 1s necessary in order to take advantage of GA
properties. Since standard representation does not express a
solution explicitly, an interpretation method will be requ-
ired. Furthermore, the combination of local optimization te-
chniques with GA is carefully considered to enhance the
solution quality. This papér aims at developing an efficient
and reliable solution method toward this aim.

2. Problem statement and notations

The VRPTW dealt in this paper is defined on the net-
work G(V, A) where V={0,1,2,---,n} is a set of no-
des, and A={(4, j) :i=j} is a set of arcs. The node 0
is the depot, and node ¢(>0) is a customer. Every node
i has the attributes of demand d(i), time window (e(3),
1(i)), and service duration s(i). The arc (4, j) connecting
from node i to node j has an attribute of travel time (s,
7). Tt is assumed that an unlimited number of vehicles with
the same capacity Q is available. The objective of the pro-
blem is to find the routes for vehicles in which total trav-
el time is minimized.

Let a solution R for the problem consist of m routes.
ie, R={r,ry -, 7,}, where the route is a sequence of
customers to be visited by a vehicle, i.e., 7, = (v 1, vg o

U ), v; € V. The tofal travel time is computed by

considering the fact that a complete route starts and ends
at the depot.
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2(R) = D340, viy) + D3 t(vg p ve 1) + t(v,,, 0] (1)
k=1 =1

j:

A solution 1s feasible if it satisfies the following con-
straints :

Cl) Each customer 1s serviced at the same time.

C2) The total demand for all customers in a route does
not exceed Q.

C3) The vehicle’s arrival time at node i/ does not ex-
ceed (7).

The total demand of a route 7, = (v, vy = ¥, )

specified in the constraint C2 is computed simply by sum-
ming the demands of all customers in the route.

D(r,) = Zd(vk,p) (2)

Constraint C3 requires additional computations to de-
termine the vehicle’s arrival time at each node. Let a(i)
and b(i) be the vehicle’s arrival time and the vehicle’s
departure time at node i, respectively. From a route r

= (V4 Uy "5 ¥, ) 1 the solution, the following relations

hold under the assumption that the vehicle departs the de-
pot at time 0.

b(0)+ (0, vy ;), j=1
alvy ;) = {b S NN [ ey (3)
a(0) = blv, )+ tlv, . ,0) (4)
5(0) =0 (5)
b(vk’j) = a(v ;) + max {0, e('vk}j) —alv ;) } (6)

+S(’Uk)j), 1<7=<mn,

The second term in the right hand side of equation (6)
is the vehicle’s wait time at v, ;. When a vehicle arrives
at the customer earlier than e(v, ), it should wait for
e(v, ;) —aly, ;). By solving the above equations (3)~ (6),
the arrival time of every node is obtained.

To explain the algorithms developed in this paper, two
special operators applied in the solution will be defined.
Deleting the customer v from a solution R is defined as :

R“"U:{Tlg"';?“k—p Tk!:'rk-+1a”'arm}a (7)

where v, ,=v and

!

e = (Uk,l'»' Ty Ve p—1 Uk pr1o s ”k,nk)'

to
rs
e}

Also, adding a customer v into p-th position of the k-th
route of R is defined as :

[R+ U]}C,p = {Tla sy T Tk-’a Tev1 "7 Tm}a (8)

4
where r, = (v, -+ Vkp Us Vgopt1s 77 Uk,nk)'

3. Genetic algorithm based on heuristic
interpretation

3.1 Representation and interpretation

The chromosome in this GA is represented as an In-
teger string of length n : (i, 4y -+, 4,). Each number in
the chromosome is a customer node. The sequence of in-
teger numbers is not directly related to the path in routes.
Instead, a heuristic-based interpretation transforms a seque-
nce into a feasible solution.

Algorithm : GAlnterpretation((iy, ig> == 1,,), m)

0 for each route ¥, k=1,---,m
0.1 r=(,)
end for
1 for each customer {;, j=m+1L,--,n
1.1 for each route #,, k=1,---,m
1.1.1 for each position 7 in 7, p=1,,n +1
LLLLif | R +?:j] kp violates the constraints C2 and C3,
Tkp = co
1.1.1.2 else if P is between two customers @ and b, compute
T, = t(a, @'j) + t(z'j, b)
1.1.1.3 else if 7 is the first position in the route followed by
customer &, compute T}, = 2 X t(i;, b)
1.1.1.4 else if P is the last position in the route following customer
a, compute T}, = 2 X tla, i,)
end if
end if
end if
end if
end for

end for
12 if T, = for all k and P, then m=m+1 %, =(i;)
1.3 else Rle*‘fij*,p* where T*p* =Mz’n{Tkp,f0r all k£ and p}

end if
end for

The basic process in GAlnterpretation 1s similar to the
insertion heuristic (Solomon, 1987) with a minimum total
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time traveled. In step 0, m routes are initialized with the
first m customers in the chromosome. In step 1, the re-
maining customers in the chromosome are inserted into the
current routes one by one. The route and the position in
the route to insert are determined by examining all the
possible alternatives. Among them, one with the minimum
value of 7, computed in steps 1.1.1.2, 1.1.1.3, and
1.1.1.4, 1s selected. Even though the computed value is not
directly related to the total time traveled, it helps to con-
struct a good cluster for each route. When a position and
route for a customer to be inserted are unavailable, a new
route 1s created (step 1.2). The complexity of the inter-
pretation method is O (n?).

In this interpretation algorithm, the initial value of m
and the first m customers play an important role in con-
structing a solution. In selecting a route in which to insert
each of the remaining »n—m customers, the route which
contains adjacent customers is preferred according to the
sertion criteria specified in step 1.3. Therefore, the sol-
ution generated by the algorithm is sensitive to the first
customer assigned to each route. When an appropriate
number of initial customers is assigned to each route, a
good solution showing the adjacent customers that are
clustered in each route will be generated. This also implies
that the appropriate value of m should be given. If m is
given with too large a value, the solution will include ex-
tra routes with too few customers. This inhibits a good
solution. Conversely, if m is too small, the diversity of
the solution may not be guaranteed. There will be high

possibility that different chromosomes will be interpreted to
the same solution.

3.2 Initial Population

The initial population is created on a random basis, i.e.,
the position for every integer number in a chromosome is
selected randomly.

3.3 Selection

In each generation of the GA process, a number of ex-
cellent chromosomes are selected for new population. The
selection 1s based on a roulette-wheel method. According
to the fitness value of a chromosome, a good chromosome
has a high probability of being selected. The fitness value
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of a chromosome is the total distance traveled of an in-
terpreted solution as defined in equation (1).

3.4 Operators

Since the chromosome representation is the same as the
path representation in TSP (Traveling Salesman Problem),
standard genetic operators can be applicable. For the TSP,
PMX [7], OX [6], and CX [l1] crossover operators are
commonly used. Among them, PMX was considered in this
paper. In implementing PMX, each chromosome in the pop-

ulation is selected for crossover with a probability %, Then,
selected chromosomes are mated randomly. For each pair of
coupled chromosomes, the PMX operator is applied.

In addition to crossover, an inversion operator was

considered. A chromosome in the population undergoes in-

version with the probability £i. Then, two nodes in the
considered chromosome are selected randomly the positions

of both nodes are then switched.

4. Local search methods

To improve the solution of GA, three improving heu-
ristics were implemented : I-relocate, 2-relocate, and 2-opt.
I-relocate simply relocates a customer to a certain position
in a route. The new position may be another position in
the same route or a position in another route. 2-relocate is
similar to A-interchange [13], where A is one. For every
pair of two nodes in different routes, these nodes are re-
located to the other route rather than interchanged. 2-opt is
a well known heuristic in TSP.

4.1 Local search based on 1-relocate

Algorithm : /RLocalSearch (R )
0 flag IR = true task 1R = false
1 while (flag 1R = true) do
1.1 flag 1R= false
1.2 for each customer i, i =1, 2, ---, n
121 RY=R—i
122 find £* and p™* such that
A&V 4], )= min{2([BY +il, ), for all k and p)
123 if 2([RY +il, ) <z(R), then R=[R"+1]
flag IR = true; task IR = true
end if

. p*



136 5T
end for
end while

2 return task 1R

The algorithm 1RLocalSearch is based on the I-relocate
heuristic, and improves the solution R. In step 1.2, every
customer undergoes relocation. The best position and route
to be relocated is determined in steps 1.2.1 and 1.2.2.
Then, the relocation is performed only if solution R is
improved. Step 1.2 is repeated when any customer has
been relocated. If no customer has been relocated, the al-
gorithm returns false (step 2). Given that the complexity
of step 1.2.2 is O(n), the time complexity of step 1.2 is
O(n?).

4.2 Local search based on 2-relocate

Algorithm : 2RLocalSearch (R)

0 flag 2R = true; task 2R = false
I while (flag 2R = true) do

1.1 flag 2R = false

1.2 for each customer i/, i = 1, 2, ---, n-1
1.2.1  foreach customer j, j = i+1, i+2, -, n
1.2.1.1 k1 1s index of route in which customer iis included

1.2.1.2
1.2.1.3

k2 1s index of route in which customer jis included
if k1 = k2, continue
end if
1.2.1.4 R(I):R“i
12.1.5 R@- R“

1216 RY = [R! .+ Where

z([ +'v]k2 - ) =min{z([R(2) +'u}k23p), for all p}
1217 RW=[R! ]m o+ Where

2([R® + ’U]kl )= min{z([R® +v]k1’p), for all p}

1218 if 2(R™) < 2(R), then R =R™ flag 2R = true
task 2R = true
end if
end for
end for
end while

2 return task 2R

The algorithm 2RLocalSearch relocates two customers at
the same time. For every pair of customers in different
the relocation of these customers to the other
routes 15 considered. Through steps 1.2.1.4 to 1.2.1.7, the
total time traveled is computed as a result of relocations.

routes,

At first, two customers are removed from the current
solution. Then each customer is inserted to the best posi-
tion in another route. If the relocations decrease the total

time traveled, a new solution is generated. The complexity
of step 1.2 is O(n?).
location succeeds. If no relocation is accomplished, false is

Step 1.2 is repeated while the re-

returned in step 2.

4.3 Local search based on 2-opt

Algorithm : 20PTLocalSearch ( R )
0 flag_opt = true; task opt = false
1 while (flag_opt = true) do

1.1 flag_opt = false

1.2 for each route r,, k=1,--,m

1.2.1 perform 2-opt procedure
1.2.2 If reconstruction of the route occurs, flag_opt = true;
task_opt = true
end if
end for
end while

2 return task opt

In 2-opt procedure, alternatives are considered by delet-
ing two edges and creating two new edges in a route.
Among these alternatives, a new route giving the best im-
provement is selected. This process is applied for all
routes of a solution, then repeated as long as tmprovement

occurs. The complexity of 2-opt is known as O(n°),

4.4 Sequential execution of local search methods

The local search methods described so far can be se-
quentially executed in order to gain greater improvement.

Algorithm : SequentialLocalSearch (R)
1 flag = flag IR = falg 2R = flag opt = true
2 while (flag = true) do
2.1 flag IR = IRLocalSearch (&)
2.2 if(flag opt = false) and (flag IR = false), flag = false; re-
turn
end if
2.3 flag 2R = 2RLocalSearch (R)
24  if(flag_IR = false) and (flag 2R = false), flag = false; re-
turn
end if
2.5 flag opt = 20PTLocalSearch ()

2.6 if(flag 2R = false) and (flag opt = false), flag = false; re-
turn
end if
end while

In steps 2.1 through 2.5 of the above algorithm, the
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three local search methods are sequentially executed. These
steps are repeated until there is no more improvement in
the solution. The algorithm takes a solution from GA as
an input, then produces a local optimal solution. To ach-
leve significant improvement, more than one local optimal
solution might be obtained with a number of initial sol-
utions generated from GA. Then, the best solution is se-
lected from among the obtained local optimal solutions.
However, a large amount of computation time will be re-
quired because the number of local optimal solutions will
increase. It 1s impossible to foresee how many iterations
of each local search method will be executed to obtain a
local optimal solution. If these local search methods are
executed with many iterations, the large computation time
will be a barrier in spite of the improvement in solution
quality. Therefore, the number of local optimal solutions
should be determined by considering the trade-off between
computation time and solution quality.

According to the type of chromosome representation
mechanism, an improved solution by local search methods
may be encoded back to the chromosome format. Since
the chromosome in our GA is represented implicitly and
interpreted by a heuristic, however, an improved solution
cannot easily be encoded back. In addition, the algorithm
SequentialLocalSearch is executed after the whole GA
process 1s complete. Thus, the GA and local search meth-
ods are loosely coupled such that the chromosome struc-
ture 1s not influenced by a local search.

5. Computational results

The GA and local search methods described in this pa-
per were coded with JAVA programming language. Then,
a number of experiments with Solomon’s instances [15]
were conducted using a Pentium-4 3.2 GHz PC. The
Solomon’s data includes six sets : R1, R2, Cl1, C2, RCI,
and RC2. Each of 56 problems has 100 customers. The
problem sets R1, Cl, and RCI1 are designed to have a
narrow scheduling horizon. Hence, short routes in which
only a few customers are served by the same vehicle will
be generated. Conversely, problem sets R2, C2, and RC2
have large scheduling horizon, and more customers can be
served by the same vehicle. The problems belonging to
the C categories are clustered data; customers are clustered
together geographically or in terms of time windows. The

ain
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problems from the R categories are uniformly distributed
data and those from the RC categories are hybrid prob-
lems having features of both C and R categories.

51 GA parameters

In order to determine the appropriate values of GA pa-
rameters, several alternatives for parameters were examined
with Solomon’s data sets. Judgments concerning GA pa-
rameters were based on the following criteria °

1. Diverse and high-quality solutions are produced wi-

thin total generations

2. The computation time 1s as small as possible

<Figure 1> shows an instance of results accomplished
with a problem of Solomon’s data sets. Several trends of
GA’s best solutions produced in each generation are sho-
wn. Each trend was generated with specific values of GA
parameters. From the figure, it is inferred that the trend
with the bold line generates more promising solutions than
the others. Some other trends demonstrate premature con-
vergence toward bad solutions or fluctuation in the range
of bad solutions. Therefore, GA parameter values used
the bold line trend will be preferred. <Table 1> shows pa-
rameter values determined from this kind of selection proc-
ess performed with Solomon’s data sets.

As stated in Section 3.1, the interpretation algorithm
GAlnterpretation requires the initial number of routes,

fitness

1 101 201 301 401 501
generation

<Figure 1> Trends of best solutions

{Table 1> GA parameters

Parameter Value
Population size 100
No. of generations 500
Crossover probability 0.4
Inversion probability 0.1
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m. In this experiment, this initial value was given as the
minimum number of routes, and calculated by consider-
ing all the customer demands and vehicles’ capacity, 1.e.,

m:Zn)D(@)/Q.

1=1

5.2 Results of Solomon’s data set

The performance of the proposed method was evaluated
with 56 problems in Solomon’s data sets. For GA, the pa-
rameter values were set as specified in Table 1. In addi-
tion, the number of GA solutions was set to 100 by con-
sidering solutton quality and computation time. Among all
the solutions generated in GA, therefore, the 100 best sol-
utions were stored. After GA, a sequential local search
method (IR, 2R, 20PT) was applied to every 100 sol-
utions. Finally, the best solution among the 100 local opti-
mal solutions was selected as a final solution. To provide
reltable results, 5 runs for each problem were executed.

To investigate the performance of each local search al-
gorithm and the effect of sequential execution of several
search methods, extensive experiments were performed.
Among three local search algorithms, 1R shows the best
performance for all categories. Improvement over initial

(Table 2> Result of R1 problem sets

Problem | Best! G:\ wit? pos’t—loc:al4 search

Ave“(Imp°) CPU Min®
R101 1645.79 1666.32(-1.25%) 156 1653.98
R102 1486.12 1500.89(-0.99%) 182 1487.02
R103 1292.68 1249.25(3.36%) 191 1235.74
R104 1007.24 1026.75(-1.94%) 210 1016.57
R10S 1377.11 1415.55(-2.79%) 177 1392.15
R106 1251.98 1294.59(-3.40%) 200 1267.54
R107 1104.66 1115.57(-0.99%) 205 1103.76
R108 960.88 978.16(-1.80%) 225 959 86
R109 1194.73 1208.09(-1.12%) 196 1174.21
R110 1118.59 1143.27(-2.21%) 212 1115.84
RIT1 1096.72 1111.03(-1.30%) 217 1096.99
R112 982.14 1006.68(-2.50%) 230 996.91
Ave (-1.41%) 200

Z) ' Best ! fitness value of best known heuristic.
2 .
Ave ! average fitness value.
: Imp = (Best - Ave)/Best.
* CPU: average CPU time in seconds.
’ Min : minimum fitness value.

o
ra
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solutions lies between 30% (R1 problems) and 50% (C2
problems) has been achieved by IR. Improvement ratio of
2R is lower than 1R in spite of more computation time.
20PT shows the worst performance : negligible improve-
ment with small computation time. When two local search
algorithms are executed sequentially, the combination of
IR and 2R shows the best performance. Finally, the com-
bination of three local search algorithms shows slightly
better improvement than (1R, 2R). For instance, improve-
ment ratio for R2 category increased by 1% compared
with (1R, 2R).

The computational results from <Table 2> to <Table 7>
show average fitness value and average CPU time, as well
as the minimum fitness value for each problem. Also, the
average improvement ratio (Imp) compared with the best
known heuristic is included.

{Table 3> Result of R2 problem sets

GA with post-local search
Problem | Best Avelimp) | CPU | Min
R201 1252.37 1262.39(-0.80%) 347 1243.60
R202 1191.70 1104.49(7.32%) 382 1075.11
R203 939.54 957.83(-1.95%) 470 944.01
R204 825.52 776.86(5.89%) 505 766.30
R205 994.42 1056.69(-6.26%) 402 1021.93
R206 906.14 972.15(-7.29%) 451 924.80
R207 893.33 862.98(3.40%) 514 836.35
R208 726.75 741.03(-1.97%) 506 719.57
R209 909.16 918.57(-1.04%) 442 892.47
R210 939.34 952.27(-1.38%) 447 937.10
R211 829.71 835.92(-0.75%) 491 819.33
Ave (-0.44%) 451
{Table 4> Result of C1 problem seis
GA with post-local search
Problem | Best Ave(lmp) CPU Min
C101 828.94 828.94(-0.00%) 140 828.94
C102 828.94 828.94(0.00%) 150 828.94
C103 828.06 847.40(-2.34%) 160 828.06
C104 824.78 840.58(-1.92%) 177 824.78
C105 828.94 828.94(0.00%) 140 828.94
C106 828.94 §28.94(0.00%) 140 828.94
C107 828.94 828.94(0.00%) 139 828.94
C108 828.94 835.03(-0.73%) 158 828.94
C109 828.94 828.94(0.00%) 167 828.94
Ave (-0.55%) 153
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{Table 5> Result of C2 problem sets

Problem Best GA with post-local search

Ave(lmp) CPU Min
C201 591.56 591.56(0.00%) 292 591.56
C202 591.56 591.56(0.00%) 336 591.56
C203 591.17 598.47(-1.23%) 377 591.17
C204 590.6 606.70(-2.73%) 483 597.46
C205 588.88 388.88(0.00%) 335 588.88
C206 588.49 588.49(0.00%) 361 588.49
C207 588.29 588.29(0.00%) 371 588.29
€208 588.32 588.32(0.00%) 372 588.32
Ave (-0.50%) 366

<Table 6> Result of RC1 problem sets

Broblem Best GA with post-local search
Ave(imp) CPU Min
RCI101 1696.94 1686.99(0.59%) 166 1655.88
RCI102 1554.75 1516.41(0.47%) 178 1494.81
RC103 1261.67 1321.95(-4.78%) 186 1281.92
RC104 1135.48 1174.33(-3.42%) 187 1138.70
RC105 1629.44 1592.30(2.28%) 177 1573.99
RC106 1424.73 1431.84(-0.50%) 181 1423.37
RC107 1230.48 1271.78(-3.36%) 189 1250.51
RC108 1139.82 1164.48(-2.16%) 198 1135.55
Ave (-1.11%) 183
{Table 7> Result of RC2 problem sets
Problem Best GA with post-local search
Ave(lmp) CPU Min
RC201 1406.91 1454.80(-3.40%) | 345 1403.00
RC202 1367.09 1230.01(10.03%) 390 1199.46
RC203 1049.62 1018.57(2.96%) 431 993.66
RC204 798.41 826.05(-3.50%) 489 806.07
RC205 1297.19 1303.05(-0.45%) 338 1281.23
RC206 1146.32 1176.20(-2.61%) 441 1141.57
RC207 1061.14 1040.53(1.94%) 435 1004.13
RC208 828.14 912.33(-10.17%) 483 889.48
Ave (-0.65%) 419

The results show that the average improvement ratio
over known best solutions by heuristics for each category
ranges in (-1.41%, -0.44%). Since the improvement ratio

in all categories is less than zero, the proposed method
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appears slightly inferior to the best known heuristics. How-
ever, the average fitness values for each problem show
that the proposed method generated better solutions than
the best-known heuristics in 10 problems out of 56 (1, 3,
3, and 3 problems of RI, R2, RCI, and RC2 respec-
tively). For 12 problems from the Cl and C2 categories,
our method generates the same results as the best-known
heuristics. Also, 24 new best solutions were produced dur-
ing 5 runs for each problem. These results demonstrate
that the proposed method can compete with the best-
known heuristics.

The computation time for each problem set shows dif-
ferent patterns. While the average computation time for the
short route problem sets, R1, Cl, and RC1 is 200 sec,
153 sec, and 183 sec respectively, the long route prob-
lems, R2, C2, and RC2 require 451 sec, 366 sec, and 419
sec. The computation time somewhat depends on the num-
ber of vehicles determined in a solution method. As the
number of vehicles decreases, 1.e., the number of custom-
ers in a route increases, the computation time increases
mainly due to the greater amount of computation time by
a local search. Considering that long a route requires a lot
of time to examine time window consfraints, it 1S a natu-
ral result in the case of VRPTW.

5. Conclusion

Considering that transportation and distribution networks
nowadays require more cost effective solutions ever before,
the vehicle routing problem has been recognized as one
of the most important problems to be solved. Though
many heuristic-based solution methods have been proposed
to solve practical problems in a reasonable amount of
time, there still remains a difficulty in providing quality
solufions.

In this paper, the combination of a genetic algorithm
and a post-local search method for VRPTW was discussed.
A chromosome in this GA i1s interpreted to a feasible sol-
ution using a heuristic method. To provide better solutions,
three local search methods are sequentially applied to a
number of GA solutions. The computation results with
Solomon’s data sets showed that the proposed method gen-
erates excellent solutions within 4 minutes in short route
problems and 8 minutes in long route problems. Compared
with the best-known solutions by heuristics, the average
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performance of our method was equal or superior in 22
out of 56 problems. Additionally, it produced 24 new best
solutions from 5 runs for each problem.
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