DOI QR코드

DOI QR Code

Procedures for Monitoring the Process Mean and Variance with One Control Chart

하나의 관리도로 공정 평균과 분산의 변화를 탐지하는 절차

  • 정상현 (중앙대학교 대학원 통계학과) ;
  • 이재현 (중앙대학교 수학통계학부)
  • Published : 2008.06.30

Abstract

Two control charts are usually required to monitor both the process mean and variance. In this paper, we introduce control procedures for jointly monitoring the process mean and variance with one control chart, and investigate efficiency of the introduced charts by comparing with the combined two EWMA charts. Our numerical results show that the GLR chart, the Omnibus EWMA chart, and the Interval chart have good ARL properties for simultaneous changes in the process mean and variance.

평균과 분산이 동시에 변화할 수 있는 공정을 관리할 경우, 평균의 변화를 탐지하는 관리도와 분산의 변화를 탐지하는 관리도를 병행하여 사용하는 것이 일반적이다. 여러 연구자들이 하나의 관리도를 사용하여 공정 평균과 분산의 변화를 동시에 탐지할 수 있는 절차를 제안했는데, 이 논문에서는 이와 같은 관리도들을 소개하고 그 효율을 비교하였다. 그 결과 GLR 관리도 Omnibus EWMA 관리도 그리고 Interval 관리도는 충분히 좋은 효율을 가짐을 알 수 있었다.

Keywords

References

  1. Amin, R. W. and Wolff, H. (1995). The behavior of EWMA-type quality control schemes in the case of mixture alternatives, Sequential Analysis, 14, 157-177 https://doi.org/10.1080/07474949508836327
  2. Amin, R. W., Wolff, H., Besenfelder, W. and Baxley, R., Jr. (1999). EWMA control charts for the smallest and largest observations, Journal of Quality Technology, 31, 189-206 https://doi.org/10.1080/00224065.1999.11979914
  3. Apley, D. W. and Shi, J. (1999). The GLRT for statistical process control of autocorrelated processes, IIE Transactions, 31, 1123-1134
  4. Chen, G., Cheng, S. W. and Xie, H. (2001). Monitoring process mean and variability with one EWMA chart, Journal of Quality Technology, 33, 223-233. https://doi.org/10.1080/00224065.2001.11980069
  5. Crowder, S. V. and Hamilton, M. D. (1992). An EWMA for monitoring a process standard deviation, Journal of Quality Technology, 24, 12-21 https://doi.org/10.1080/00224065.1992.11979369
  6. Domangue, R. and Patch, S. C. (1991). Some omnibus exponentially weighted moving average statistical process monitoring schemes, Technometrics, 33, 299-313 https://doi.org/10.2307/1268782
  7. Gan, F. F., Ting, K. W. and Chang, T. C. (2004). Interval charting schemes for joint monitoring of process mean and variance, Quality and Reliability Engineering International, 20, 291-304 https://doi.org/10.1002/qre.543
  8. Howell, J. M. (1949). Control chart for largest and smallest values, The Annals of Mathematical Staistics, 20, 305-309 https://doi.org/10.1214/aoms/1177730041
  9. Sarkadi, K. and Vincze, I. (1974). Mathematical methods of statistical quality control, Academic Press, New York
  10. Vander Wiel, S. A. (1996). Monitoring processes that wander using integrated moving average models, Technometrics, 38, 139-151 https://doi.org/10.2307/1270407