DOI QR코드

DOI QR Code

Nanoparticle Focusing with A Novel Converging-Diverging-Type Aerodynamic Lens

수축-발산형 공기역학렌즈를 이용한 초미세 나노 입자의 집속

  • 이광승 (부산대학교 대학원 기계공학부) ;
  • 김송길 (부산대학교 대학원 기계공학부) ;
  • 이동근 (부산대학교 기계공학부)
  • Published : 2008.08.01

Abstract

An orifice type of aerodynamic lens is generally used to focus nanoparticles. However, it is impossible to focus particles smaller than 10nm in air due to flow instability of fluid in a lens. In this study, we propose a new converging-diverging type of the aerodynamic lens capable of focusing particles of 5-50nm in air. Designing factors of the lens configurations is also extracted and explained in detail through a numerical simulation. It was demonstrated that the aerosols are delivered from the entrance to the downstream of the lens system with 90% transmission efficiency. The final beam diameters are shown to be more or less 1mm in the range of particle size.

Keywords

References

  1. Murphy, W. K. and Sears, G. W., 1964, “Production of Particulate Beams,” J. Appl. Phys., Vol. 35, pp. 1986-1987 https://doi.org/10.1063/1.1713788
  2. Liu, P., Ziemann, P. J., Kittelson, D. B. and McMurry, P. H., 1995a, “Generation Particle Beams of Controlled Dimensions and Divergence: I. Theory of Particle Motion in Aerodynamic Lenses and Nozzle Expansions,” Aerosol Sci. Technol., Vol. 22, pp. 293-313 https://doi.org/10.1080/02786829408959748
  3. Liu, P., Ziemann, P. J., Kittelson, D. B. and McMurry, P. H., 1995b, “Generation Particle Beams of Controlled Dimensions and Divergence: II. Experimental Evaluation of Particle Motion in Aerodynamic Lenses and Nozzle Expansions,” Aerosol Sci. Technol., Vol. 22, pp. 314-324 https://doi.org/10.1080/02786829408959749
  4. Carson, P. G., Johnston, M. V. and Wexler, A. S., 1997, “Laser Desorption/Ionization of Ultrafine Aerosol Particles,” Rapid Commun. Mass Spectrom., Vol. 11, pp. 993-996 https://doi.org/10.1002/(SICI)1097-0231(19970615)11:9<993::AID-RCM950>3.0.CO;2-J
  5. Noble, C. A. and Prather, K. A., 2000, “Real-time Single Particle Mass Spectrometry: a Historical Review of a Quarter Century of Chemical Analysis of Aerosols,” Mass Spectrom. Rev., Vol. 19, pp. 248-274 https://doi.org/10.1002/1098-2787(200007)19:4<248::AID-MAS3>3.0.CO;2-I
  6. Lee, D., Park, K. and Zachariah, M. R., 2005, “Determination of Size Distribution of Polydisperse Nanoparticles with Single Particle Mass Spectrometry: The Role of Ion Kinetic Energy.” Aerosol Sci. Technol., Vol. 39, pp. 162-169 https://doi.org/10.1080/027868290904537
  7. Lee, D., Miller, A., Kittelson, D. and Zachariah, M. R., 2006, “Characterization of Metal-bearing Diesel Nanoparticles Using Single Particle Mass Spectrometry,” J. Aerosol Sci., Vol. 37(1), pp. 88-110 https://doi.org/10.1016/j.jaerosci.2005.04.006
  8. Reents, W. D. and Ge, Z., 2000, “Simultaneous Elemental Composition and Size Distribution of Submicron Particles in Real Time Using Laser Atomizer/Ionization Mass Spectrometry,” Aerosol Sci. Technol., Vol. 33, pp. 122-134 https://doi.org/10.1080/027868200410886
  9. Mahadevan, R., Lee, D., Sakurai, H. and Zachariah, M. R., 2002, “Measurement of Condensed-Phase Reaction Kinetics in the Aerosol Phase Using Single Particle Mass Spectrometry,” J. Phys. Chem. A, Vol. 106, pp. 11083-11092 https://doi.org/10.1021/jp025784c
  10. Park, K., Lee, D., Rai, A., Mckherjee, D. and Zachariah, M. R., 2005, “Size-Resolved Kinetic Measurements of Aluminum Nanoparticle Oxidation with Single Particle Mass Spectrometry,” J. Phys. Chem. B, Vol. 109, pp. 7290-7299 https://doi.org/10.1021/jp048041v
  11. Venkataraman, C. and Raymond, J., 1998, “Estimating the Lung Deposition of Particulate Polycyclic Aromatic Hydrocarbons Associated with Multimodal Urban Aerosols,” Inhal. Toxical., Vol. 10(3), pp. 183-204 https://doi.org/10.1080/089583798197727
  12. Schreiner, J., Schild, U., Voigt, C. and Mauersberger, K., 1999, “Focusing of Aerosols into a Particle Beam at Pressures from 10 to 150 Torr,” Aerosol Sci. Technol., Vol. 31(5), pp. 373-382 https://doi.org/10.1080/027868299304093
  13. Huffman, J., Jayne, J., Drewnick, F., Aiken, A., Onasch, T., Worsnop, D. and Jimenez, J., 2005, “Design, Modeling, Optimization, and Experimental Tests of a Particle Beam Width Probe for the Aerodyne Aerosol Mass Spectrometer,” Aerosol Sci. Technol., Vol. 39, pp. 1143-1163 https://doi.org/10.1080/02786820500423782
  14. Zhang, X., Smith, K. A., Worsnop, D. R., Jimenez, J., Jayne, J. T. and Kolb, C. E., 2002, “A Numerical Characterization of Particle Beam Collimation by an Aerodynamic Lens-Nozzle System: Part I. An Individual Lens or Nozzle,” Aerosol Sci. Technol., Vol. 36, pp. 617-631 https://doi.org/10.1080/02786820252883856
  15. Zhang, X., Smith, K. A., Worsnop, D. R., Jimenez, J. L., Jayne, J. T., Kolb, C. E., Morris, J. and Davidovits, P., 2004, “Numerical Characterization of Particle Beam Collimation: Part II Integrated Aerodynamic-Lens-Nozzle System,” Aerosol Sci. Technol., Vol. 38, pp. 619-638 https://doi.org/10.1080/02786820490479833
  16. Wang, X., Kruis, F. E. and McMury, P. H., 2005a, “Aerodynamic Focusing of Nanoparticles: I. Guidelines for designing Aerodynamic Lenses for Nanoparticles,” Aerosol Sci. Technol., Vol. 39, pp. 611-623 https://doi.org/10.1080/02786820500181901
  17. Wang, X. and McMurry, P. H., 2006b, “A Design Tool for Aerodynamic Lens Systems,” Aerosol Sci. Technol., Vol. 40, pp. 320-334 https://doi.org/10.1080/02786820600615063
  18. Lee, K.-S., Cho, S.-W. and Lee, D., 2008, “Development and Experimental Evaluation of Aerodynamic Lens as an Aerosol Inlet of Single Mass Spectrometry,” J. Aerosol Sci., Vol. 39, pp. 287-304 https://doi.org/10.1016/j.jaerosci.2008.01.001
  19. Wang, X., Gidwani, A., Girshick, S. L. and McMurry, P. H., 2005b, “Aerodynamic Focusing of Nanoparticles: II Numerical Simulation of Particle Motion through Aerodynamic Lenses,” Aerosol Sci. Technol., Vol. 39, pp. 624-636 https://doi.org/10.1080/02786820500181950
  20. Wang, X. and McMurry, P. H., 2006a, “An Experimental Study of Nanoparticle Focusing with Aerodynamic Lenses,” Int. J. Mass Spectrom., Vol. 258, pp. 30-36 https://doi.org/10.1080/02786820500181950
  21. Cheng, Y. S. and Dahneke, B. E., 1979, “Properties of Continuum Source Particle Beam. II. Beams Generated in Capillary Expansions,” J. Aerosol. Sci., Vol. 10, pp. 363-368 https://doi.org/10.1016/0021-8502(79)90030-2
  22. Mallina, R. V., Wexler, A. S. and Johnston, M. V., 1997, “Particle Growth in High-speed Pparticle Beam Inlet,” J. Aerosol Sci., Vol. 28, pp. 223-238 https://doi.org/10.1016/S0021-8502(96)00435-1
  23. Mallina, R. V., Wexler, A. S. and Johnston, M. V., 1999, “High-speed Particle Beam Generation: Simple Focusing Mechanisms,” J. Aerosol Sci., Vol. 30, pp. 719-738 https://doi.org/10.1016/S0021-8502(98)00759-9
  24. Grujicic, M., Zhao, C. L., Tong, C., DeRosset, W. S. and Helfritch, D., 2004, “Analysis of the Impact Velocity of Powder Particles in the Cold-gas Dynamic-Spray Process,” Materials Sci. eng. A, Vol. 368, pp. 222-230 https://doi.org/10.1016/j.msea.2003.10.312
  25. Jen, T.-C., Pan, L., Li, L., Chen, Q. and Cui, W., 2006, “The Acceleration of Charged Nano-particles in Gas Stream of Supersonic de-Laval-type Nozzle Coupled with Static Electric Field,” Appl. Thermal eng., Vol. 26, pp. 613-621 https://doi.org/10.1016/j.applthermaleng.2005.07.033
  26. Tafreshi, H. V., Benedek, G., Piseri, P., Vinati, S., Barborini, E. and Milani, P., 2002, “A Simple Nozzle Configuration for the Production of Low Divergence Supersonic Cluster Beam by Aerodynamic Focusing.” Aerosol Sci. Technol., Vol. 36, pp. 593-606 https://doi.org/10.1080/02786820252883838
  27. Chen, S.-C., Tsai, C.-J., Wu, C.-H., Pui, D. Y. H, Onischuk, A. A. and Karasev V. V., 2007, “Particle Loss in a Critical Orifice,” J. Aerosol Sci., Vol. 38, pp. 939-949 https://doi.org/10.1016/j.jaerosci.2007.06.010
  28. Zare, A., Abousli, O. and Ahmadi. G., 2007, “Computational Investigation of Airflow, Shock Wave and Nano-particle Separation in Supersonic and Hypersonic Impactors,” J. Aerosol Sci., Vol. 38, pp. 1015-1030 https://doi.org/10.1016/j.jaerosci.2007.07.006