DOI QR코드

DOI QR Code

Analysis of CMTX Mutants Using Connexin Membrane Channels

커넥신 세포막채널을 이용한 씨엠티엑스 돌연변이체의 분석

  • Cheon, Mi-Saek (Department of Physiology, College of Medicine, Dankook University) ;
  • Oh, Seung-Hoon (Department of Physiology, College of Medicine, Dankook University)
  • 천미색 (단국대학교 의과대학 생리학교실) ;
  • 오승훈 (단국대학교 의과대학 생리학교실)
  • Published : 2008.06.30

Abstract

Mutations in the human connexin 32 (Cx32) gene are responsible for X-linked Charcot-Marie-Tooth (CMTX) disease. Although over 300 different mutations have been identified the detailed molecular etiology of CMTX disease is poorly understood. Several studies reported that connexin membrane channels share most biophysical properties with their parental gap junction channels. In this study, two connexin mutant membrane channels (one mutant channel called the M34T channel in which the methionine residue at the $34^{th}$ position of the Cx32 protein is replaced with threonine residue and the other mutant channel called the T86C channel in which the threonine residue at the $86^{th}$ position is replaced with cysteine residue) associated with CMTX mutations were characterized at the single-channel level instead of using mutant gap junction channels. The biophysical properties of the M34T channel were very similar to those of the gap junction channel formed by M34T mutation. In addition, the mutant membrane channel study revealed the reversal of the gating polarity, the loss of fast gating and the gain of slow gating. The T86C channel also behaves like its parental wild type Cx32 membrane channel. Taken together, these results suggest that a study using connexin membrane channels is useful to characterize CMTX mutants.

커넥신(connexin) 32 유전자의 돌연변이가 씨엠티엑스(CMTX, X-linked Charcot-Marie-Tooth) 질환과 관련이 있다. 현재까지 300여개 이상의 돌연변이가 보고가 되었으나 이 질환에 대한 상세한 분자병리학적 원인을 거의 알려져 있지 않고 있다. 여러 연구를 통해서 커넥신 세포막채널이 간극결합채널이 갖고 있는 대부분의 생물리학적 특성을 갖고 있는 것으로 판명되었다. 이번 연구에서는 씨엠티엑스 질환과 관련된 두 개의 돌연변이체를 선정하여 간극결합채녈 대신 돌연변이체로 구성된 커넥신 세포막채널을 이용하여 단일채널수준에서 이들 돌연변이체의 특성을 조사하였다. M34T 돌연변이 세포막채널의 생물리학적 특성은 이들로 구성된 돌연변이 간극결합채널의 특성과 거의 유사하였다. 더욱이, 돌연변이 세포막채널을 이용한 연구를 통해서 간극결합채널을 이용한 연구에서는 밝혀지지 않았던 개폐극성의 역전, 빠른 개폐의 소실과 느린 개폐의 생성과 같은 새로운 사실을 알게 되었다. T86C 돌연변이 세포막채널 또한 이의 모체가 되는 커넥신 32 세포막채널과 유사한 특성을 갖고 있음을 알게 되었다. 이상의 결과를 통해서 커넥신 세포막을 이용한 연구가 씨엠티엑스 질환의 돌연변이체를 연구하는데 매우 유용할 것으로 생각된다.

Keywords

References

  1. Bergoffen, J., S. S. Scherer, S. Wang, M. O. Scott, L. J. Bone, D. L. Paul, K. Chen, M. W. Lensch, P. F. Chance and K. H. Fischbeck. 1993. Connexin mutations in X-linked Charcot-Marie-Tooth disease. Science 262, 2039-2042 https://doi.org/10.1126/science.8266101
  2. Bone, L. J., S. M. Deschenes, R. J. Balice-Gordon, K. H. Fischbeck and S. S. Scherer. 1997. Connexin32 and X-linked Charcot-Marie-Tooth disease. Neurobiol. Dis. 4, 221-230 https://doi.org/10.1006/nbdi.1997.0152
  3. Cheon, M. and S. Oh. 2007. Single channel analysis of Xenopus connexin 38 hemichannel. J. Life Sci. 17, 1517-1522 https://doi.org/10.5352/JLS.2007.17.11.1517
  4. Ebihara, L. 1996. Xenopus connexin38 forms hemi-gap-junctional channels in the nonjunctional plasma membrane of Xenopus oocytes. Biophys. J. 71, 742-748 https://doi.org/10.1016/S0006-3495(96)79273-1
  5. Harris, A. L. 2001. Emerging issues of connexin channels: Biophysics fills the gap. Q. Rev. Biophys. 34, 325-472
  6. Karlin, A and M. H. Akabas. 1998. Substituted-cysteine accessibility method. Methods Enzymol. 293, 123-145 https://doi.org/10.1016/S0076-6879(98)93011-7
  7. Keller, M. P. and P. F. Chance. 1999. Inherited peripheral neuropathy. Semin. Neurol. 19, 353-362 https://doi.org/10.1055/s-2008-1040850
  8. Oh, S., C. K. Abrams, V. K. Verselis and T. A Bargiello. 2000. Stoichiometry of transjunctional voltage-gating polarity reversal by a negative charge substitution in the amino terminus of a connexin32 chimera. J. Gen. Physiol. 116, 13-31 https://doi.org/10.1085/jgp.116.1.13
  9. Oh, S., Y. Ri, M. V. Bennett, E. B. Trexler, V. K. Verselis and T. A Bargiello. 1997. Changes in permeability caused by connexin 32 mutations underlie X-linked CharcotMarie- Tooth disease. Neuron 19, 927-938 https://doi.org/10.1016/S0896-6273(00)80973-3
  10. Oh, S., S. Rivkin, Q. Tang, V. K. Verselis and T. A Bargiello. 2004. Determinants of gating polarity of a connexin 32 hemichannel. Biophys. J. 87, 912-928 https://doi.org/10.1529/biophysj.103.038448
  11. Oh, S., J. B. Rubin, M. V. L. Bennett, V. K. Verselis and T. A Bargiello. 1999. Molecular determinants of electrical rectification of single channel conductance in gap junctions formed by connexin 26 and 32. J. Gen. Physiol. 114, 339-364 https://doi.org/10.1085/jgp.114.3.339
  12. Pfahnl, A, X. W. Zhou, R. Werner and G. Dahl. 1997. A chimeric connexin forming gap junction hemichannels. Pflugers Arch. 433, 773-779 https://doi.org/10.1007/s004240050344
  13. Ressot, c., P. Latour, F. Blanquet-Grossard, F. Sturtz, S. Duthel, J. Battin, E. Corbillon, E. Ollagnon, F. Serville, A Vandenberghe, A Dautigny and D. Pham-Dinh. 1996. X-linked dominant Charcot-Marie-Tooth neuropathy (CMTX): new mutations in the connexin32 gene. Hum. Genet. 98, 172-175 https://doi.org/10.1007/s004390050183
  14. Rubin, J. B., V. K. Verselis, M. V. Benett and T. A Bargiello. 1992. A domain substitution procedure and its use to analyze voltage dependence of homotypic gap junctions formed by connexins 26 and 32. Proc. Natl. Acad. Sci. USA 89, 3820-3824 https://doi.org/10.1073/pnas.89.9.3820
  15. Shy, M. E. 2004. Charcot-Marie-Tooth disease: an update. Curro Opin. Neurol. 17, 579-585
  16. Sorour, E. and M. Upadhyaya. 1998. Mutation analysis in Charcot- Marie-Tooth disease type 1 (CMT1). Hum. Mutat. Suppl. 1, S242-S247
  17. Trexler, E. B., M. V. Bennett, T. A Bargiello and V. K. Verselis. 1996. Voltage gating and permeation in a gap junction hemichannel. Proc. Natl. Acad. Sci. USA 93, 5836-5841 https://doi.org/10.1073/pnas.93.12.5836
  18. Yim, J., M. Cheon, J. Jung and S. Oh. 2006. Effect of amino terminus of gap junction hemichannel on its channel gating. J. Life Sci. 16, 37-43 https://doi.org/10.5352/JLS.2006.16.1.037