DOI QR코드

DOI QR Code

Phylogenesis of Halophila ovalis (R. Br.) Hook. fil. (Hydrocharitaceae) from An Island, Korea

전남 여수시 안도섬에서 발견된 해오말의 유전학적 관계 연구

  • 김정배 (국립수산과학원 남해수산연구소) ;
  • 조은섭 (국립수산과학원 남해수산연구소)
  • Published : 2008.06.30

Abstract

Halophila ovalis (R. Br.) Hook. fil. was first collected from the Ando, Yeosu, Korea in 2007. H. ovalis is Widely distributed from sub-tropical to even tropical areas and produces the seeds using bisexual reproduction. Its leaf shape was oblong to ovate. Its leaf blades were rigid in texture, with a strong support to the leaf. Erect shoots arose at irregular intervals along the rhizome. The distance between the intramarginal vein and leaves margin was small. Nucleotides in ITS 1 and ITS 2 regions between the Korean and Japanese H. ovalis were found to be 100% similar, whereas Korean H. ovalis was found to have four nucleotides in the positions of 202 bp to 206 bp for 5.8S. In the analysis of the phylogenetic relationship using NJ method, Korean H. ovalis had a monophyletic genetic tree with Japanese H. ovalis, but no phylogenetic relationship with types from the Philippines, Australia, Malaysia, and Vietnam. The first occurrence of H. ovalisin Korea was associated with a strong migration of gene flow from Japan and high water temperature caused by the variations in climate.

2007년 전라남도 여수시 남면 안도리에서 발견된 국내 미기록종 해오말은 지리적으로 열대부터 아열대까지 넓게 분포하는 식물로서 열매를 만든다. 잎의 모양은 계란형에 가깝고, 입꼭지는 견고하고 잎을 지지하고 있다. 뿌리는 불규칙적으로 뻗어있고, 뿌리 사이로 꽃이 형성되어 있다. 잎맥은 잎의 가장자리와 공간을 유지하고 있다. ITS1과 ITS2 부위은 한국산과 일본산 해오말은 100% 동일한 염기서열을 나타내고 있으나, 5.8S에서 한국산 해오말은 202 bp에서 206 bp까지 4개의 염기가 삽입된 것이 보였다. ITS 부위에 대한 한국산 해오말은 일본산과 동일한 유전적 clade을 나타내었으나, 필리핀, 호주, 베트남, 말레이시아산 해오말과는 유전적 분리를 보였다. 따라서 한국산 해오말은 일본에서 gene flow로 된 것으로 추정되며, 아열대성인 해오말이 우리나라 연안에 나타난 것은 기후변동에 의한 수온상승과도 밀접한 관계가 있는 것으로 보인다.

Keywords

References

  1. den Hartog, C. 1970. The seagrasses of the world. North-Holland Publishing Company Amsterdam. pp. 275
  2. Kimura, M. 1980. A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequences. J. Mol. Evol. 116, 111-120
  3. Kuo, J. and C. den hartog. 2001. Seagrass taxonomy and identification key, pp. 31-58, In Short, F. T. and R. G. Coles (eds.), Global seagrass research methods, Elsevier Science, Amsterdam
  4. Larkum, A. W. D. 1995. Halaphila capricorni (Hydrocharitaceae): a new species of seagrass from the coral Sea. Aqua. Bot. 51, 319-328 https://doi.org/10.1016/0304-3770(95)00474-E
  5. Les, D. H., D. K. Garvin and C. F. Wimpee. 1993. Phylogenetic studies in the monocot subclass Alismatidae: Evidence for a reappraisal of the aquatic order Najadales. Mol. Phylogent. Evol. 2, 304-314 https://doi.org/10.1006/mpev.1993.1029
  6. Les, D. H., M. A. Cleland and M. Waycott. 1997. Phylogenetic studies in Alismatidae, Il-evolution of marine angiospem (seagrasses) and hydrophily. Systematic Bot. 22, 443-463 https://doi.org/10.2307/2419820
  7. Les, D. H., M. L. Moody, S. W. L. Jacobs and R. J. Bayer. 2002. Systematics of seagrasses (Zosteraceae) in Australia and New Zealand. Systematic Bot. 27, 468-484
  8. Lee, S. W. 1996. An outline of oecanaphysics. pp. 225, Jipmundang Press, Seoul
  9. McMillan, C. and S. C. Williams. 1980. Systematic implications of isozymes in Halaphila section Halaphila. Aquat. Bot. 9, 21-31 https://doi.org/10.1016/0304-3770(80)90004-2
  10. Reusch, T. B. H. 2001. Fitness-consequences of geitonogamy in a clonal marine angiosperm (Zostera marina). J. Evol. BioI. 14, 129-139 https://doi.org/10.1046/j.1420-9101.2001.00257.x
  11. Ruggiero, M. V. and G. Procaccini. 2004. The rDNA ITS region n the Lessepsian marine angiosperm Halophila stipulacea (Forssk.) Aschers. (Hydrocharitaceae): Intragenomic variability and putative pseudogenic sequences. J. Mol. Evol. 58, 115-121 https://doi.org/10.1007/s00239-003-2536-0
  12. Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. BioI. Evol. 4, 406-425
  13. Thomson, J. D., D. G. Higgins and T. J. Gibson. 1994. Clustal W: Improving the sensitivity of progressivemultiple sequence alignment through sequence weighting, position- specific gap penalities and weight matrix choice. Nucleic Acids Res. 22, 4673-4680 https://doi.org/10.1093/nar/22.22.4673
  14. Uchimura, M., E. J. Faye, S. Shimada, S. Arai, T. Inoue and Y. Nakamura. 2006. A re-evaluation of the taxonomic status of Halophila euphlebia Makino (Hydrocharitaceae) based on morphological features and ITS sequence data. Bot. Mar. 49, 111-121 https://doi.org/10.1515/BOT.2006.015
  15. Waycott, M., D. W. Freshwater, R. A. York, A. Calladine and W. J. Kenworthy. 2002. Evolutionary trends in the seagrass Halophila: Insights from molecular phylogeny. Bull. Mar. Sci. 71, 1299-1308
  16. Weidner, S., W. Arnold and A. Puhler. 1996. Diversity of uncultured microorganisms associated with the seagrass Halophila stipulacea estimated from restriction fragment length polymorphism analysis of PCR-amplified 16S rRNA genes. Appl. Environ. Microbial. 62, 766-771
  17. Weidner, S., W. Arnold, E. Stackebradt and A. Puhler. 2000. Phylogenetic analysis of bacterial communities associated with leaves of the seagrass Halophila stipulacea by a culture-independent small-subunit rRNA gene approach. Micro. Ecol. 39, 22-31 https://doi.org/10.1007/s002489900194