접촉 작업을 위한 로봇의 스킬 학습 전략

Robot Skill Learning Strategy for Contact Task

  • 발행 : 2008.05.30

초록

본 논문에서는 인간 운동 제어 이론과 기계학습을 기반으로 하여 로봇의 접촉 작업 수행을 위한 새로운 운동 학습 전략을 제시하였다. 성공적인 접촉 작업 수행을 위한 본 연구의 전략은 강화학습 기법을 통하여 최적의 작업 수행을 위한 임피던스 매개 변수를 찾는 것이다. 본 연구에서는 최적의 임피던스 매개 변수를 결정하기 위하여 Recursive Least-Square (RLS) 필터 기반 episodic Natural Actor-Critic 알고리즘이 적용되었다. 본 논문에서는 제안한 전략의 효용성을 증명하기 위해 동역학 시뮬레이션을 수행하였고, 그 결과를 통하여 접촉작업에서의 작업 최적화 및 환경이 가지는 불확실성에 대한 적응성을 보여 주었다.

키워드