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Abstract. We estimate the real rank of CCR C∗-algebras under some assumptions. As

applications we determine the real rank of the reduced group C∗-algebras of non-compact

connected, semi-simple and reductive Lie groups and that of the group C∗-algebras of

connected nilpotent Lie groups.

1. Introduction

The real rank for C∗-algebras was introduced by Brown and Pedersen [3]. By
definition, we say that a unital C∗-algebra A has the real rank n = RR(A) if n is
the smallest non-negative integer such that for any ε > 0 given, any self-adjoint
element (aj)n+1

j=1 ∈ An+1 with aj = a∗j is approximated by a self-adjoint element
(bj)n+1

j=1 ∈ An+1 with bj = b∗j such that ‖aj − bj‖ < ε (1 ≤ j ≤ n + 1) and
∑n+1

j=1 b2
j

is invertible in A. For a non-unital C∗-algebra, its real rank is defined by that of
its unitization by C. By definition, RR(A) ∈ {0, 1, 2, · · · ,∞}.

On the other hand, CCR C∗-algebras are very well known in the C∗-algebra
theory such as the representation theory and structure theory of C∗-algebras (or
group C∗-algebras). Recall that a C∗-algebra A is CCR (or liminary) if for any
irreducible representation π of A, the image π(A) is either isomorphic to a matrix
algebra Mn(C) over C or to K the C∗-algebra of compact operators on a separable
infinite dimensional Hilbert space (Dixmier [4, Section 4.2] and Pedersen [11, Section
6.1]).

However, it seems that the real rank of CCR C∗-algebras has been unknown. It
is in part because it is difficult in general to compute the real rank of extensions of
C∗-algebras. Thus as the first step we impose an assumption on CCR C∗-algebras
that they have no finite dimensional irreducible representations. Then we can show
below that those CCR C∗-algebras have real rank less than or equal to one by
using their composition series and some results on the real rank for extensions of
C∗-algebras (Nagisa, Osaka and Phillips [9]) and for tensor products of C∗-algebras
with K (Beggs and Evans [2]).

As applications, we show that the real rank of the reduced group C∗-algebras of
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non-compact connected semi-simple Lie groups is one, and that of the reduced group
C∗-algebras of non-compact connected reductive Lie groups is also one by using [13]
in part for the structure of these group C∗-algebras. These results should be new
and interesting. Compare them with the stable rank of those group C∗-algebras
[13] (and see below). See also Kaniuth [7].

Moreover, following the same methods for the real rank of those CCR C∗-
algebras and using [2] for the real rank of tensor products of commutative C∗-
algebras with Mn(C) we show that the real rank of CCR C∗-algebras which have
no infinite dimensional irreducible representations can be estimated in terms of
homogeneous subquotients with continuous trace.

Finally, we estimate the real rank of a CCR C∗-algebra that is decomposed
into a closed ideal and a quotient that have no finite and no infinite dimensional
irreducible representations respectively. As the final application, we show that the
real rank of the group C∗-algebras of connected nilpotent Lie groups is equal to the
dimension of the spaces of their 1-dimensional representations. For the stable rank
of these group C∗-algebras, see [17] (and see below).

2. The real rank of CCR C∗-algebras

Theorem 2.1. Let A be a CCR C∗-algebra. Suppose that A has no finite dimen-
sional irreducible representations. Then RR(A) ≤ 1.

Proof. Since A is of type I, it has a composition series (Ij) of essential closed ideals
such that the union ∪jIj is dense in A and the subquotients Ij/Ij−1 have con-
tinuous trace and each Ij is essential in Ij+1 ([11, Theorem 6.2.11], [4, Theorem
4.5.5]). Thus, the subquotients Ij/Ij−1 for j ≥ 1 with I0 = {0} have Hausdorff
spectrums, and by the assumption they are regarded as continuous field C∗-algebras
Γ0(Xj , {K}) on their spectrums Xj with fibers the constant K consisting of (cer-
tain) continuous operator fields on Xj vanishing at infinity ([4, Theorem 10.5.4]).
Since the continuous field C∗-algebras Γ0(Xj , {K}) are locally trivial ([4, Theorem
10.8.8]), they are inductive limits of the tensor products C0(Ujk)⊗K for (certain)
increasing open subsets Ujk of Xj with the unions ∪kUjk = Xj , where C0(Ujk) are
the C∗-algebras of continuous functions on Ujk vaninshing at infinity.

As the first step, we have the following exact sequence:

0 −−−−→ I1 −−−−→ I2 −−−−→ I2/I1 −−−−→ 0∥∥∥ ι

y τ

y
0 −−−−→ I1 −−−−→ M(I1)

q−−−−→ M(I1)/I1 −−−−→ 0

where M(I1) is the multiplier algebra of I1, and I2 is isomorphic to the pull back
M(I1)⊕q,τ I2/I1 defined by {(x, y) ∈ M(I1)⊕ I2/I1 | q(x) = τ(y)}, where q is the
canonical quotient map and τ is the Busby invariant associated with the extension,
and ι is the canonical inclusion (cf. [19]). Since I1

∼= Γ0(X1, {K}), we have M(I1) ∼=
Γb(X1, {B}) the C∗-algebra of a bounded continuous field on X1 with fibers the
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constant B the C∗-algebra of all bounded operators with the strict topology (cf.
[1]). However, since I2 is CCR and ι is injective from that I1 is essential in I2, we
in fact that I2 is embedded in Γb(X1, {K}). Therefore, we have

I2
∼= Γb(X1, {K})⊕q,τ I2/I1.

Furthermore, we note that Γb(X1, {K}) is stable, that is,

Γb(X1, {K}) ∼= Γb(X1, {K})⊗K,

which follows from Γb(X1, {K})⊗Mn(C) ∼= Γb(X1, {K ⊗Mn(C)}) ∼= Γb(X1, {K})
for any n ≥ 1, and we can replace Mn(C) with K. Note also that continuous fields
with fibers K are always locally trivial (see [4, Chapter 10]), and it is known that
an inductive limit of stable C∗-algebras is also stable [6].

By using [9, Proposition 1.6] and [2, Proposition 3.3],

RR(I2) ≤ max{RR(Γb(X1, {K})⊗K),RR(I2/I1)}
≤ max{1,RR(I2/I1)} = 1

since I2/I1
∼= lim−→C0(U2k)⊗K so that

RR(lim−→C0(U2k)⊗K) ≤ sup
k

RR(C0(U2k)⊗K)) ≤ 1.

As the second step, we have the following commutative diagrams:

0 −−−−→ I1 −−−−→ I3 −−−−→ I3/I1 −−−−→ 0∥∥∥ ι1

y τ1

y
0 −−−−→ I1 −−−−→ M(I1)

q1−−−−→ M(I1)/I1 −−−−→ 0

and

0 −−−−→ I2/I1 −−−−→ I3/I1 −−−−→ I3/I2 −−−−→ 0∥∥∥ ι2

y τ2

y
0 −−−−→ I2/I1 −−−−→ M(I2/I1)

q2−−−−→ M(I2/I1)/(I2/I1) −−−−→ 0.

Note that I2/I1 is essential in I3/I1 since I2 is essential in I3. By the same
reasoning as in the first case, we have

I3/I1
∼= M(I2/I1)⊕q2,τ2 I3/I2

∼= Γb(X2, {K})⊕q2,τ2 I3/I2
∼= (Γb(X2, {K})⊗K)⊕q2,τ2 I3/I2.

By using [9, Proposition 1.6] and [2, Proposition 3.3],

RR(I3/I1) ≤ max{RR(Γb(X2, {K})⊗K),RR(I3/I2)}
≤ max{1,RR(I3/I2)} = 1
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since I3/I2
∼= lim−→C0(U3k)⊗K so that

RR(lim−→C0(U3k)⊗K) ≤ sup
k

RR(C0(U3k)⊗K)) ≤ 1.

Furthermore, we have

I3
∼= M(I1)⊕q1,τ1 I3/I1

∼= Γb(X1, {K})⊕q1,τ1 I3/I1
∼= (Γb(X1, {K})⊗K)⊕q1,τ1 I3/I1.

Therefore, by [9, Proposition 1.6] and [2, Proposition 3.3] we obtain

RR(I3) ≤ max{RR(Γb(X1, {K})⊗K),RR(I3/I1)}
≤ max{1,RR(I3/I1)} = 1.

For the general step, we use the following diagrams:

0 −−−−→ Dj −−−−→ In/Ij−1 −−−−→ In/Ij −−−−→ 0∥∥∥ ιj

y τj

y
0 −−−−→ Dj −−−−→ M(Dj)

qj−−−−→ M(Dj)/(Dj) −−−−→ 0

for 1 ≤ j ≤ n− 1, where Dj = Ij/Ij−1 and I0 = {0}. By the same reasoning as in
the first case, we have

In/Ij−1
∼= M(Dj)⊕qj ,τj

In/Ij

∼= Γb(Xj , {K})⊕qj ,τj In/Ij
∼= (Γb(Xj , {K})⊗K)⊕qj ,τj In/Ij .

By [9, Proposition 1.6] and [2, Proposition 3.3] we obtain

RR(In/Ij−1) ≤ max{RR(Γb(Xj , {K})⊗K),RR(In/Ij)}
≤ max{1,RR(In/Ij)}.

Using this inequality repeatedly for j varying, we have RR(In) ≤ 1.
Since the union ∪jIj is dense in A, we obtain RR(A) ≤ supj RR(Ij) ≤ 1 as

desired. �

Remark. It is shown in Takai and the author [18, Proposition 3.1] that

sr(A) ≤ 2

for A a separable C∗-algebra of type I which have no finite dimensional irreducible
representations, where sr(·) means the stable rank of C∗-algebras (see [12]). By
definition, sr(A) ∈ {1, 2, · · · ,∞}. However, their method is much different from the
method in the proof above.

As an important application, we have
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Corollary 2.2. Let G be a non-amenable CCR locally compact group and C∗r (G)
its reduced group C∗-algebra. Then

RR(C∗r (G)) ≤ 1.

Proof. It is known that if G is a non-amenable locally compact group, then C∗r (G)
has no finite dimensional irreducible representations (cf. [4, Chapter 18 and 18.9.5]).
�

Remark. It is shown in [13, Proposition 2.3] that

sr(C∗r (G)) ≤ 2

for G a non-amenable locally compact group of type I.
In particular, we obtain

Theorem 2.3. Let G be a non-compact connected real semi-simple Lie group and
C∗r (G) its reduced group C∗-algebra. Then

RR(C∗r (G)) = 1.

Proof. It is known that G is CCR (cf. [4, Chapter 17 and 17.4.6]), and G is non-
amenable since it is non-compact. Thus, RR(C∗r (G)) ≤ 1 by Corollary 2.2. When
G has real rank one as a Lie group via Iwasawa decomposition, it follows from the
structure of C∗r (G) given by [13, Lemma 2.2] that C∗r (G) has a closed ideal of the
form C0(R)⊗K. Since C0(R)⊗K has no projections we have RR(C0(R)⊗K) ≥ 1.
By [2, Proposition 3.3] we have RR(C0(R) ⊗ K) ≤ 1. Therefore, by [5, Theorem
1.4] we have RR(C∗r (G)) ≥ RR(C0(R)⊗K) = 1. When G has real rank more than
one as a Lie group, it follows from the structure of C∗r (G) given by [13, Lemma 2.1]
that C∗r (G) has a closed ideal of the form C0(X)⊗K for X a certain non-compact
connected locally compact Hausdorff space. Hence, by the same argument as above
we deduce RR(C∗r (G)) ≥ 1. �

Remark. It is shown in [13, Theorem 2.5] that

sr(C∗r (G)) = min{2, rr(G)}

for G a non-compact connected real semi-simple Lie group, where rr(G) is the real
rank of G.

Furthermore, we obtain

Theorem 2.4. Let G be a non-compact connected real reductive Lie group and
C∗r (G) its reduced group C∗-algebra. Then

RR(C∗r (G)) = 1.
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Proof. Since G is reductive, non-compact and connected, there exists a non-compact
connected semi-simple quotient Lie group S of G. In fact, S ∼= G/R for R the radical
of G (i.e, the largest connected solvable Lie group in G). Then C∗r (S) is a quotient
of C∗r (G) since R is amenable. Thus, we obtain RR(C∗r (G)) ≥ RR(C∗r (S)) = 1 by
[5, Theorem 1.4] and our Theorem 2.3. Since G is CCR and non-amenable, we have
RR(C∗r (G)) ≤ 1 by Corollary 2.2. �

Remark. It is shown in [13, Theorem 3.1] ([15, Theorem 3.1]) that

sr(C∗r (G)) = min{2,max{rr([G, G]),dim Z∧ + 1}}

for G a non-compact connected real reductive Lie group, where [G, G] is the com-
mutator group of G, and Z is the center of G and Z∧ is its dual group.

As another consequence of Theorem 2.1 we have

Corollary 2.5. Let A be an inductive limit of CCR C∗-algebras which have no
finite dimensional irreducible representations. Then

RR(A) ≤ 1.

Proof. This follows from the property of the real rank for inductive limits of
C∗-algebras (cf. [3, Proposition 3.1] and use its generalization). �

On the other hand, we now recall that a C∗-algebra A is n-homogeneous if for
any irreducible representation π of A, its image π(A) of A is isomorphic to Mn(C),
and A is ∞-homogeneous if π(A) ∼= K for any irreducible representation π of A (cf.
[4]). Following the methods as in Theorem 2.1 we can obtain

Theorem 2.6. Let A be a CCR C∗-algebra. Suppose that A has no infinite dimen-
sional irreducible representations. Then we have

RR(A) = sup
j
ddim Xj/(2nj − 1)e

for a composition series {Ij} of A such that subquotients Ij/Ij−1 are isomorphic
to C0(Xj)⊗Mnj

(C) for some nj, where dxe means the least integer ≥ x.

Proof. We have treated the case for ∞-homogeneous C∗-algebras in Theorem 2.1.
Using the notations as in the proof of Theorem 2.1 we deal with the case for sub-
quotients with continuous trace to be n-homogeneous C∗-algebras. In fact, since
A is CCR, by the assumption we have a composition series {Ij} of A with such
subquotients Ij/Ij−1. Thus, we replace the subquotients Ij/Ij−1 = Γ0(Xj , {K})
in the proof of Theorem 2.1 with Γ0(Xj , {Mnj

(C)}) for some nj . Furthermore,
since each Γ0(Xj , {Mnj

(C)}) is locally trivial, we may assume and replace that
Ij/Ij−1 = C0(Xj)⊗Mnj (C) (if necessary by transfinite induction for the subquo-
tients). Then we have M(I1) ∼= Cb(X1) ⊗ Mn1(C) ∼= C(βX1) ⊗ Mn1(C), where
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Cb(X1) is the C∗-algebra of bounded continuous functions on X1, and βX1 is the
Stone-Čech compactification of X1 (cf. [1]). Thus, using [9, Proposition 1.6] and
[2, Corollary 3.2] we obtain

RR(I2) ≤ max{RR(M(I1)),RR(I2/I1)}
= max{RR(C(βX1)⊗Mn1(C)),RR(C0(X2)⊗Mn2(C))}
= max{ddim βX1/(2n1 − 1)e, ddim X2/(2n2 − 1)e}

and repeating this process above we obtain

RR(A) ≤ sup
j
ddim Xj/(2nj − 1)e.

On the other hand, by [5] we have

RR(A) ≥ RR(Ij) ≥ RR(Ij/Ij−1) = ddim Xj/(2nj − 1)e.

Therefore, we obtain the conclusion as desired. �

Remark. For any C∗-algebra A, we have

RR(A) ≥ sup
1≤n<∞

ddim Xn/(2n− 1)e,

where Xn means the subspace of the spectrum of A consisting of n-dimensional
irreducible representations of A. Note that some or all Xn may be empty. Moreover,
by the same way we have

sr(A) ≥ sup
1≤n<∞

(1 + d[dim Xn/2]/ne),

where [x] means the maximum integer ≤ x. For a C∗-algebra A of type I, it is
shown by [16, Corollary 2.8] that

sr(A) ≤ max{2, sup
1≤n<∞

(1 + d[(1 + dim Xn)/2]/ne)}.

As a general result containing Theorem 2.1 and Theorem 2.6 in part,

Theorem 2.7. Let A be a CCR C∗-algebra. Suppose that A is decomposed into the
exact sequence:

0 → I → A → D → 0,

where I is a CCR C∗-algebra that has no finite dimensional irreducible represen-
tations and D is a CCR C∗-algebra that has no infinite dimensional irreducible
representations. Then

RR(D) ≤ RR(A) ≤ max{1,RR(D)}.
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Namely, in other words,

sup
j
ddim Xj/(2j − 1)e ≤ RR(A) ≤ max{1, sup

j
ddim Xj/(2j − 1)e},

where Xj are the subspaces of the spectrum of A consisting of j-dimensional irre-
ducible representations.

Remark. Note that quotients and closed ideals of CCR C∗-algebras are CCR. But
extensions of CCR C∗-algebras by CCR C∗-algebras are not always CCR (cf. [4]).
In fact, such extensions may not have Hausdorff spectrums.

To prove this theorem we need the following lemma :

Lemma 2.8. Let A be a CCR C∗-algebra. Suppose that A is decomposed into the
exact sequence:

0 → I → A → D → 0,

where I is an essential closed ideal of A and is a continuous trace C∗-algebra that
has no finite dimensional irreducible representations and D is a CCR C∗-algebra.
Then

RR(A) ≤ max{1,RR(D)}.

Proof. We use the first step of the argument in the proof of Theorem 2.1. Namely,

replace I1 and I2/I1 with I and D respectively. �

Remark. If a C∗-algebra A has an ∞-homogeneous closed ideal I with continuous
trace, then it is shown by [10] that

sr(A) ≤ max{2, sr(A/I)}.

Proof of Theorem 2.7. Since A is CCR (and of type I), there exists an essential
composition series {Ij} of A such that subquotients Ij/Ij−1 are of continuous
trace and each Ij is essential in Ij+1. For each j, we consider the following exact
sequence:

0 → I ∩ Ij → Ij → Dj → 0,

where the quotient Dj corresponds to the subspace D∧∩(I∧j \(I∩Ij)∧), where B∧ for
a C∗-algebra B means the spectrum of B consisting of its irreducible representations
up to unitary equivalence. Now set Kk = I ∩ Ik for 1 ≤ k ≤ j and K0 = {0}. Then
we consider the following exact sequences:

0 → Kk/Kk−1 → Ij/Kk−1 → Ij/Kk → 0

for 1 ≤ k ≤ j. Note that Ij/Kk−1 are CCR and Kk/Kk−1 are ∞-homogeneous
continuous trace C∗-algebras. Hence, using the argument for the general step in
the proof of Theorem 2.1 and Lemma 2.8 repeatedly we obtain

RR(Ij/Kk−1) ≤ max{1,RR(Ij/Kk)}
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for 1 ≤ k ≤ j. This implies that

RR(Ij) ≤ max{1,RR(Dj)} ≤ max{1,RR(D)}.

Note that Dj are subquotients of D. Since the union of Ij is dense in A, we have

RR(A) ≤ supRR(Ij) ≤ max{1,RR(D)}

as desired. �

As an important application, we obtain

Theorem 2.9. Let G be a connected nilpotent Lie group and C∗(G) its group
C∗-algebra. Then

RR(C∗(G)) = dim G∧1 ,

where G∧1 is the space of all 1-dimensional representations of G.

Proof. Since C∗(G) (or G) is CCR and we have the following exact sequence:

0 → I → C∗(G) → C0(G∧1 ) → 0,

where I is a CCR C∗-algebra that has no finite dimensional irreducible representa-
tions (note that since G is a solvable Lie group, the Lie’s theorem tells us that G (or
C∗(G)) has no finite dimensional irreducible representations except 1-dimensional
ones), we can use Theorem 2.7 so that

RR(C0(G∧1 )) ≤ RR(C∗(G)) ≤ max{1,RR(C0(G∧1 ))}.

By [3, Proposition 1.1] we have RR(C0(G∧1 )) = dim G∧1 . Moreover, [14] implies that
dim G∧1 = 0 if and only if G is isomorphic to the k-torus T k. In this case we have
RR(C∗(G)) = 0 since C∗(T k) ∼= C0(Zk) by the Fourier transform and C0(Zk) ∼=
⊕ZkC the c0-direct sum of C. Furthermore, by [14] we have dimG∧1 = 1 if and only
if G is isomorphic to either R×T k or R. In this case we have RR(C∗(G)) = 1 since
C∗(R × T k) ∼= C0(R × Zk). If dim G∧1 ≥ 2, then the inequalities obtained above
imply the conclusion. �

Remark. Note that the space G∧1 is homeomorphic to the dual group (G/[G, G])∧

of the quotient connected abelian Lie group G/[G, G] so that G/[G, G] ∼= Rs × T t

and hence G∧1 ≈ Rs ×Zt for some s, t ≥ 0. For G a connected nilpotent Lie group,
it is shown by [14] that

sr(C∗(G)) = [dim G∧1 /2] + 1.

This generalizes the case for G a simply connected nilpotent Lie group by [17].
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