KYUNGPOOK Math. J. 48(2008), 223-232

The Real Rank of CCR C*-Algebras

Takahiro Sudo

Department of Mathematical Sciences, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan e-mail: sudo@math.u-ryukyu.ac.jp

ABSTRACT. We estimate the real rank of CCR C^* -algebras under some assumptions. As applications we determine the real rank of the reduced group C^* -algebras of non-compact connected, semi-simple and reductive Lie groups and that of the group C^* -algebras of connected nilpotent Lie groups.

1. Introduction

The real rank for C^* -algebras was introduced by Brown and Pedersen [3]. By definition, we say that a unital C^* -algebra \mathfrak{A} has the real rank $n = \operatorname{RR}(\mathfrak{A})$ if n is the smallest non-negative integer such that for any $\varepsilon > 0$ given, any self-adjoint element $(a_j)_{j=1}^{n+1} \in \mathfrak{A}^{n+1}$ with $a_j = a_j^*$ is approximated by a self-adjoint element $(b_j)_{j=1}^{n+1} \in \mathfrak{A}^{n+1}$ with $b_j = b_j^*$ such that $||a_j - b_j|| < \varepsilon$ $(1 \le j \le n+1)$ and $\sum_{j=1}^{n+1} b_j^2$ is invertible in \mathfrak{A} . For a non-unital C^* -algebra, its real rank is defined by that of its unitization by C. By definition, $\operatorname{RR}(\mathfrak{A}) \in \{0, 1, 2, \dots, \infty\}$.

On the other hand, CCR C^* -algebras are very well known in the C^* -algebra theory such as the representation theory and structure theory of C^* -algebras (or group C^* -algebras). Recall that a C^* -algebra \mathfrak{A} is CCR (or liminary) if for any irreducible representation π of \mathfrak{A} , the image $\pi(\mathfrak{A})$ is either isomorphic to a matrix algebra $M_n(C)$ over C or to K the C^* -algebra of compact operators on a separable infinite dimensional Hilbert space (Dixmier [4, Section 4.2] and Pedersen [11, Section 6.1]).

However, it seems that the real rank of CCR C^* -algebras has been unknown. It is in part because it is difficult in general to compute the real rank of extensions of C^* -algebras. Thus as the first step we impose an assumption on CCR C^* -algebras that they have no finite dimensional irreducible representations. Then we can show below that those CCR C^* -algebras have real rank less than or equal to one by using their composition series and some results on the real rank for extensions of C^* -algebras (Nagisa, Osaka and Phillips [9]) and for tensor products of C^* -algebras with K (Beggs and Evans [2]).

As applications, we show that the real rank of the reduced group C^* -algebras of

Received April 17, 2006.

²⁰⁰⁰ Mathematics Subject Classification: 46L05.

Key words and phrases: C*-algebra, real rank, group C^* -algebras.

²²³

non-compact connected semi-simple Lie groups is one, and that of the reduced group C^* -algebras of non-compact connected reductive Lie groups is also one by using [13] in part for the structure of these group C^* -algebras. These results should be new and interesting. Compare them with the stable rank of those group C^* -algebras [13] (and see below). See also Kaniuth [7].

Moreover, following the same methods for the real rank of those CCR C^* algebras and using [2] for the real rank of tensor products of commutative C^* algebras with $M_n(C)$ we show that the real rank of CCR C^* -algebras which have no infinite dimensional irreducible representations can be estimated in terms of homogeneous subquotients with continuous trace.

Finally, we estimate the real rank of a CCR C^* -algebra that is decomposed into a closed ideal and a quotient that have no finite and no infinite dimensional irreducible representations respectively. As the final application, we show that the real rank of the group C^* -algebras of connected nilpotent Lie groups is equal to the dimension of the spaces of their 1-dimensional representations. For the stable rank of these group C^* -algebras, see [17] (and see below).

2. The real rank of CCR C*-algebras

Theorem 2.1. Let \mathfrak{A} be a CCR C^{*}-algebra. Suppose that \mathfrak{A} has no finite dimensional irreducible representations. Then $\operatorname{RR}(\mathfrak{A}) \leq 1$.

Proof. Since \mathfrak{A} is of type I, it has a composition series (\mathfrak{I}_j) of essential closed ideals such that the union $\cup_j \mathfrak{I}_j$ is dense in \mathfrak{A} and the subquotients $\mathfrak{I}_j/\mathfrak{I}_{j-1}$ have continuous trace and each \mathfrak{I}_j is essential in \mathfrak{I}_{j+1} ([11, Theorem 6.2.11], [4, Theorem 4.5.5]). Thus, the subquotients $\mathfrak{I}_j/\mathfrak{I}_{j-1}$ for $j \geq 1$ with $\mathfrak{I}_0 = \{0\}$ have Hausdorff spectrums, and by the assumption they are regarded as continuous field C^* -algebras $\Gamma_0(X_j, \{K\})$ on their spectrums X_j with fibers the constant K consisting of (certain) continuous operator fields on X_j vanishing at infinity ([4, Theorem 10.5.4]). Since the continuous field C^* -algebras $\Gamma_0(X_j, \{K\})$ are locally trivial ([4, Theorem 10.8.8]), they are inductive limits of the tensor products $C_0(U_{jk}) \otimes K$ for (certain) increasing open subsets U_{jk} of X_j with the unions $\cup_k U_{jk} = X_j$, where $C_0(U_{jk})$ are the C^* -algebras of continuous functions on U_{jk} vaninshing at infinity.

As the first step, we have the following exact sequence:

where $M(\mathfrak{I}_1)$ is the multiplier algebra of \mathfrak{I}_1 , and \mathfrak{I}_2 is isomorphic to the pull back $M(\mathfrak{I}_1) \oplus_{q,\tau} \mathfrak{I}_2/\mathfrak{I}_1$ defined by $\{(x, y) \in M(\mathfrak{I}_1) \oplus \mathfrak{I}_2/\mathfrak{I}_1 | q(x) = \tau(y)\}$, where q is the canonical quotient map and τ is the Busby invariant associated with the extension, and ι is the canonical inclusion (cf. [19]). Since $\mathfrak{I}_1 \cong \Gamma_0(X_1, \{K\})$, we have $M(\mathfrak{I}_1) \cong \Gamma^b(X_1, \{B\})$ the C^{*}-algebra of a bounded continuous field on X_1 with fibers the

constant *B* the *C*^{*}-algebra of all bounded operators with the strict topology (cf. [1]). However, since \mathfrak{I}_2 is CCR and ι is injective from that \mathfrak{I}_1 is essential in \mathfrak{I}_2 , we in fact that \mathfrak{I}_2 is embedded in $\Gamma^b(X_1, \{K\})$. Therefore, we have

$$\mathfrak{I}_2 \cong \Gamma^b(X_1, \{K\}) \oplus_{q,\tau} \mathfrak{I}_2/\mathfrak{I}_1.$$

Furthermore, we note that $\Gamma^b(X_1, \{K\})$ is stable, that is,

$$\Gamma^b(X_1, \{K\}) \cong \Gamma^b(X_1, \{K\}) \otimes K_2$$

which follows from $\Gamma^b(X_1, \{K\}) \otimes M_n(C) \cong \Gamma^b(X_1, \{K \otimes M_n(C)\}) \cong \Gamma^b(X_1, \{K\})$ for any $n \ge 1$, and we can replace $M_n(C)$ with K. Note also that continuous fields with fibers K are always locally trivial (see [4, Chapter 10]), and it is known that an inductive limit of stable C^* -algebras is also stable [6].

By using [9, Proposition 1.6] and [2, Proposition 3.3],

$$\begin{aligned} \operatorname{RR}(\mathfrak{I}_2) &\leq \max\{\operatorname{RR}(\Gamma^b(X_1, \{K\}) \otimes K), \operatorname{RR}(\mathfrak{I}_2/\mathfrak{I}_1)\} \\ &\leq \max\{1, \operatorname{RR}(\mathfrak{I}_2/\mathfrak{I}_1)\} = 1 \end{aligned}$$

since $\mathfrak{I}_2/\mathfrak{I}_1 \cong \underline{\lim} C_0(U_{2k}) \otimes K$ so that

$$\operatorname{RR}(\varinjlim_k C_0(U_{2k}) \otimes K) \le \sup_k \operatorname{RR}(C_0(U_{2k}) \otimes K)) \le 1$$

As the second step, we have the following commutative diagrams:

and

Note that $\mathfrak{I}_2/\mathfrak{I}_1$ is essential in $\mathfrak{I}_3/\mathfrak{I}_1$ since \mathfrak{I}_2 is essential in \mathfrak{I}_3 . By the same reasoning as in the first case, we have

$$\begin{aligned} \mathfrak{I}_3/\mathfrak{I}_1 &\cong& M(\mathfrak{I}_2/\mathfrak{I}_1) \oplus_{q_2,\tau_2} \mathfrak{I}_3/\mathfrak{I}_2 \\ &\cong& \Gamma^b(X_2,\{K\}) \oplus_{q_2,\tau_2} \mathfrak{I}_3/\mathfrak{I}_2 \cong (\Gamma^b(X_2,\{K\}) \otimes K) \oplus_{q_2,\tau_2} \mathfrak{I}_3/\mathfrak{I}_2. \end{aligned}$$

By using [9, Proposition 1.6] and [2, Proposition 3.3],

$$\begin{aligned} \operatorname{RR}(\mathfrak{I}_3/\mathfrak{I}_1) &\leq & \max\{\operatorname{RR}(\Gamma^b(X_2, \{K\}) \otimes K), \operatorname{RR}(\mathfrak{I}_3/\mathfrak{I}_2)\} \\ &\leq & \max\{1, \operatorname{RR}(\mathfrak{I}_3/\mathfrak{I}_2)\} = 1 \end{aligned}$$

since $\mathfrak{I}_3/\mathfrak{I}_2 \cong \lim C_0(U_{3k}) \otimes K$ so that

$$\operatorname{RR}(\varinjlim_k C_0(U_{3k}) \otimes K) \le \sup_k \operatorname{RR}(C_0(U_{3k}) \otimes K)) \le 1.$$

Furthermore, we have

$$\begin{aligned} \mathfrak{I}_3 &\cong & M(\mathfrak{I}_1) \oplus_{q_1,\tau_1} \mathfrak{I}_3/\mathfrak{I}_1 \\ &\cong & \Gamma^b(X_1,\{K\}) \oplus_{q_1,\tau_1} \mathfrak{I}_3/\mathfrak{I}_1 \cong (\Gamma^b(X_1,\{K\}) \otimes K) \oplus_{q_1,\tau_1} \mathfrak{I}_3/\mathfrak{I}_1. \end{aligned}$$

Therefore, by [9, Proposition 1.6] and [2, Proposition 3.3] we obtain

$$\begin{aligned} \operatorname{RR}(\mathfrak{I}_3) &\leq \max\{\operatorname{RR}(\Gamma^b(X_1, \{K\}) \otimes K), \operatorname{RR}(\mathfrak{I}_3/\mathfrak{I}_1)\} \\ &\leq \max\{1, \operatorname{RR}(\mathfrak{I}_3/\mathfrak{I}_1)\} = 1. \end{aligned}$$

For the general step, we use the following diagrams:

for $1 \leq j \leq n-1$, where $\mathfrak{D}_j = \mathfrak{I}_j/\mathfrak{I}_{j-1}$ and $\mathfrak{I}_0 = \{0\}$. By the same reasoning as in the first case, we have

$$\begin{aligned} \mathfrak{I}_n/\mathfrak{I}_{j-1} &\cong & M(\mathfrak{D}_j) \oplus_{q_j,\tau_j} \mathfrak{I}_n/\mathfrak{I}_j \\ &\cong & \Gamma^b(X_j,\{K\}) \oplus_{q_j,\tau_j} \mathfrak{I}_n/\mathfrak{I}_j \cong (\Gamma^b(X_j,\{K\}) \otimes K) \oplus_{q_j,\tau_j} \mathfrak{I}_n/\mathfrak{I}_j. \end{aligned}$$

By [9, Proposition 1.6] and [2, Proposition 3.3] we obtain

$$\begin{aligned} \operatorname{RR}(\mathfrak{I}_n/\mathfrak{I}_{j-1}) &\leq & \max\{\operatorname{RR}(\Gamma^b(X_j, \{K\}) \otimes K), \operatorname{RR}(\mathfrak{I}_n/\mathfrak{I}_j)\} \\ &\leq & \max\{1, \operatorname{RR}(\mathfrak{I}_n/\mathfrak{I}_j)\}. \end{aligned}$$

Using this inequality repeatedly for j varying, we have $\operatorname{RR}(\mathfrak{I}_n) \leq 1$.

Since the union $\cup_j \mathfrak{I}_j$ is dense in \mathfrak{A} , we obtain $\operatorname{RR}(\mathfrak{A}) \leq \sup_j \operatorname{RR}(\mathfrak{I}_j) \leq 1$ as desired. \Box

Remark. It is shown in Takai and the author [18, Proposition 3.1] that

$$\operatorname{sr}(\mathfrak{A}) \leq 2$$

for \mathfrak{A} a separable C^* -algebra of type I which have no finite dimensional irreducible representations, where $\operatorname{sr}(\cdot)$ means the stable rank of C^* -algebras (see [12]). By definition, $\operatorname{sr}(\mathfrak{A}) \in \{1, 2, \dots, \infty\}$. However, their method is much different from the method in the proof above.

As an important application, we have

Corollary 2.2. Let G be a non-amenable CCR locally compact group and $C_r^*(G)$ its reduced group C^* -algebra. Then

$$\operatorname{RR}(C_r^*(G)) \le 1.$$

Proof. It is known that if G is a non-amenable locally compact group, then $C_r^*(G)$ has no finite dimensional irreducible representations (cf. [4, Chapter 18 and 18.9.5]). \Box

Remark. It is shown in [13, Proposition 2.3] that

$$\operatorname{sr}(C_r^*(G)) \le 2$$

for G a non-amenable locally compact group of type I. In particular, we obtain

Theorem 2.3. Let G be a non-compact connected real semi-simple Lie group and $C_r^*(G)$ its reduced group C^* -algebra. Then

$$\operatorname{RR}(C_r^*(G)) = 1.$$

Proof. It is known that G is CCR (cf. [4, Chapter 17 and 17.4.6]), and G is nonamenable since it is non-compact. Thus, $\operatorname{RR}(C_r^*(G)) \leq 1$ by Corollary 2.2. When G has real rank one as a Lie group via Iwasawa decomposition, it follows from the structure of $C_r^*(G)$ given by [13, Lemma 2.2] that $C_r^*(G)$ has a closed ideal of the form $C_0(R) \otimes K$. Since $C_0(R) \otimes K$ has no projections we have $\operatorname{RR}(C_0(R) \otimes K) \geq 1$. By [2, Proposition 3.3] we have $\operatorname{RR}(C_0(R) \otimes K) \leq 1$. Therefore, by [5, Theorem 1.4] we have $\operatorname{RR}(C_r^*(G)) \geq \operatorname{RR}(C_0(R) \otimes K) = 1$. When G has real rank more than one as a Lie group, it follows from the structure of $C_r^*(G)$ given by [13, Lemma 2.1] that $C_r^*(G)$ has a closed ideal of the form $C_0(X) \otimes K$ for X a certain non-compact connected locally compact Hausdorff space. Hence, by the same argument as above we deduce $\operatorname{RR}(C_r^*(G)) \geq 1$. □

Remark. It is shown in [13, Theorem 2.5] that

$$\operatorname{sr}(C_r^*(G)) = \min\{2, \operatorname{rr}(G)\}$$

for G a non-compact connected real semi-simple Lie group, where rr(G) is the real rank of G.

Furthermore, we obtain

Theorem 2.4. Let G be a non-compact connected real reductive Lie group and $C_r^*(G)$ its reduced group C^* -algebra. Then

$$\operatorname{RR}(C_r^*(G)) = 1.$$

Proof. Since G is reductive, non-compact and connected, there exists a non-compact connected semi-simple quotient Lie group S of G. In fact, $S \cong G/R$ for R the radical of G (i.e, the largest connected solvable Lie group in G). Then $C_r^*(S)$ is a quotient of $C_r^*(G)$ since R is amenable. Thus, we obtain $\operatorname{RR}(C_r^*(G)) \ge \operatorname{RR}(C_r^*(S)) = 1$ by [5, Theorem 1.4] and our Theorem 2.3. Since G is CCR and non-amenable, we have $\operatorname{RR}(C_r^*(G)) \le 1$ by Corollary 2.2.

Remark. It is shown in [13, Theorem 3.1] ([15, Theorem 3.1]) that

 $sr(C_r^*(G)) = \min\{2, \max\{rr([G, G]), \dim Z^{\wedge} + 1\}\}\$

for G a non-compact connected real reductive Lie group, where [G, G] is the commutator group of G, and Z is the center of G and Z^{\wedge} is its dual group.

As another consequence of Theorem 2.1 we have

Corollary 2.5. Let \mathfrak{A} be an inductive limit of CCR C^{*}-algebras which have no finite dimensional irreducible representations. Then

 $\operatorname{RR}(\mathfrak{A}) \leq 1.$

Proof. This follows from the property of the real rank for inductive limits of C^* -algebras (cf. [3, Proposition 3.1] and use its generalization).

On the other hand, we now recall that a C^* -algebra \mathfrak{A} is *n*-homogeneous if for any irreducible representation π of \mathfrak{A} , its image $\pi(\mathfrak{A})$ of \mathfrak{A} is isomorphic to $M_n(C)$, and \mathfrak{A} is ∞ -homogeneous if $\pi(\mathfrak{A}) \cong K$ for any irreducible representation π of \mathfrak{A} (cf. [4]). Following the methods as in Theorem 2.1 we can obtain

Theorem 2.6. Let \mathfrak{A} be a CCR C^{*}-algebra. Suppose that \mathfrak{A} has no infinite dimensional irreducible representations. Then we have

$$\operatorname{RR}(\mathfrak{A}) = \sup_{j} \lceil \dim X_j / (2n_j - 1) \rceil$$

for a composition series $\{\mathfrak{I}_j\}$ of \mathfrak{A} such that subquotients $\mathfrak{I}_j/\mathfrak{I}_{j-1}$ are isomorphic to $C_0(X_j) \otimes M_{n_j}(C)$ for some n_j , where $\lceil x \rceil$ means the least integer $\geq x$.

Proof. We have treated the case for ∞ -homogeneous C^* -algebras in Theorem 2.1. Using the notations as in the proof of Theorem 2.1 we deal with the case for subquotients with continuous trace to be *n*-homogeneous C^* -algebras. In fact, since \mathfrak{A} is CCR, by the assumption we have a composition series $\{\mathfrak{I}_j\}$ of \mathfrak{A} with such subquotients $\mathfrak{I}_j/\mathfrak{I}_{j-1}$. Thus, we replace the subquotients $\mathfrak{I}_j/\mathfrak{I}_{j-1} = \Gamma_0(X_j, \{K\})$ in the proof of Theorem 2.1 with $\Gamma_0(X_j, \{M_{n_j}(C)\})$ for some n_j . Furthermore, since each $\Gamma_0(X_j, \{M_{n_j}(C)\})$ is locally trivial, we may assume and replace that $\mathfrak{I}_j/\mathfrak{I}_{j-1} = C_0(X_j) \otimes M_{n_j}(C)$ (if necessary by transfinite induction for the subquotients). Then we have $M(\mathfrak{I}_1) \cong C^b(X_1) \otimes M_{n_1}(C) \cong C(\beta X_1) \otimes M_{n_1}(C)$, where $C^{b}(X_{1})$ is the C^{*} -algebra of bounded continuous functions on X_{1} , and βX_{1} is the Stone-Čech compactification of X_{1} (cf. [1]). Thus, using [9, Proposition 1.6] and [2, Corollary 3.2] we obtain

$$RR(\mathfrak{I}_{2}) \leq \max\{RR(M(\mathfrak{I}_{1})), RR(\mathfrak{I}_{2}/\mathfrak{I}_{1})\} \\ = \max\{RR(C(\beta X_{1}) \otimes M_{n_{1}}(C)), RR(C_{0}(X_{2}) \otimes M_{n_{2}}(C))\} \\ = \max\{\lceil \dim \beta X_{1}/(2n_{1}-1)\rceil, \lceil \dim X_{2}/(2n_{2}-1)\rceil\}$$

and repeating this process above we obtain

$$\operatorname{RR}(\mathfrak{A}) \le \sup_{j} \lceil \dim X_j / (2n_j - 1) \rceil.$$

On the other hand, by [5] we have

$$\operatorname{RR}(\mathfrak{A}) \ge \operatorname{RR}(\mathfrak{I}_j) \ge \operatorname{RR}(\mathfrak{I}_j/\mathfrak{I}_{j-1}) = \lceil \dim X_j/(2n_j-1) \rceil$$

Therefore, we obtain the conclusion as desired.

Remark. For any C^* -algebra \mathfrak{A} , we have

$$\operatorname{RR}(\mathfrak{A}) \ge \sup_{1 \le n < \infty} \left\lceil \dim X_n / (2n-1) \right\rceil$$

where X_n means the subspace of the spectrum of \mathfrak{A} consisting of *n*-dimensional irreducible representations of \mathfrak{A} . Note that some or all X_n may be empty. Moreover, by the same way we have

$$\operatorname{sr}(\mathfrak{A}) \ge \sup_{1 \le n < \infty} (1 + \lceil [\dim X_n/2]/n \rceil),$$

where [x] means the maximum integer $\leq x$. For a C^* -algebra \mathfrak{A} of type I, it is shown by [16, Corollary 2.8] that

$$\operatorname{sr}(\mathfrak{A}) \le \max\{2, \sup_{1 \le n < \infty} (1 + \lceil [(1 + \dim X_n)/2]/n \rceil)\}.$$

As a general result containing Theorem 2.1 and Theorem 2.6 in part,

Theorem 2.7. Let \mathfrak{A} be a CCR C^{*}-algebra. Suppose that \mathfrak{A} is decomposed into the exact sequence:

$$0 \to \mathfrak{I} \to \mathfrak{A} \to \mathfrak{D} \to 0,$$

where \mathfrak{I} is a CCR C^{*}-algebra that has no finite dimensional irreducible representations and \mathfrak{D} is a CCR C^{*}-algebra that has no infinite dimensional irreducible representations. Then

$$\operatorname{RR}(\mathfrak{D}) \leq \operatorname{RR}(\mathfrak{A}) \leq \max\{1, \operatorname{RR}(\mathfrak{D})\}.$$

Namely, in other words,

$$\sup_{j} \lceil \dim X_j/(2j-1) \rceil \le \operatorname{RR}(\mathfrak{A}) \le \max\{1, \sup_{j} \lceil \dim X_j/(2j-1) \rceil\},\$$

where X_j are the subspaces of the spectrum of \mathfrak{A} consisting of *j*-dimensional irreducible representations.

Remark. Note that quotients and closed ideals of CCR C^* -algebras are CCR. But extensions of CCR C^* -algebras by CCR C^* -algebras are not always CCR (cf. [4]). In fact, such extensions may not have Hausdorff spectrums.

To prove this theorem we need the following lemma :

Lemma 2.8. Let \mathfrak{A} be a CCR C^* -algebra. Suppose that \mathfrak{A} is decomposed into the exact sequence:

$$0 \to \mathfrak{I} \to \mathfrak{A} \to \mathfrak{D} \to 0,$$

where \mathfrak{I} is an essential closed ideal of \mathfrak{A} and is a continuous trace C^* -algebra that has no finite dimensional irreducible representations and \mathfrak{D} is a CCR C^* -algebra. Then

$$\operatorname{RR}(\mathfrak{A}) \leq \max\{1, \operatorname{RR}(\mathfrak{D})\}\$$

Proof. We use the first step of the argument in the proof of Theorem 2.1. Namely, replace \mathfrak{I}_1 and $\mathfrak{I}_2/\mathfrak{I}_1$ with \mathfrak{I} and \mathfrak{D} respectively.

Remark. If a C^* -algebra \mathfrak{A} has an ∞ -homogeneous closed ideal \mathfrak{I} with continuous trace, then it is shown by [10] that

$$\operatorname{sr}(\mathfrak{A}) \leq \max\{2, \operatorname{sr}(\mathfrak{A}/\mathfrak{I})\}.$$

Proof of Theorem 2.7. Since \mathfrak{A} is CCR (and of type I), there exists an essential composition series $\{\mathfrak{I}_j\}$ of \mathfrak{A} such that subquotients $\mathfrak{I}_j/\mathfrak{I}_{j-1}$ are of continuous trace and each \mathfrak{I}_j is essential in \mathfrak{I}_{j+1} . For each j, we consider the following exact sequence:

$$0 \to \mathfrak{I} \cap \mathfrak{I}_j \to \mathfrak{I}_j \to \mathfrak{D}_j \to 0,$$

where the quotient \mathfrak{D}_j corresponds to the subspace $\mathfrak{D}^{\wedge} \cap (\mathfrak{I}_j^{\wedge} \setminus (\mathfrak{I} \cap \mathfrak{I}_j)^{\wedge})$, where \mathfrak{B}^{\wedge} for a C^* -algebra \mathfrak{B} means the spectrum of \mathfrak{B} consisting of its irreducible representations up to unitary equivalence. Now set $\mathfrak{K}_k = \mathfrak{I} \cap \mathfrak{I}_k$ for $1 \leq k \leq j$ and $\mathfrak{K}_0 = \{0\}$. Then we consider the following exact sequences:

$$0 \to \mathfrak{K}_k/\mathfrak{K}_{k-1} \to \mathfrak{I}_j/\mathfrak{K}_{k-1} \to \mathfrak{I}_j/\mathfrak{K}_k \to 0$$

for $1 \leq k \leq j$. Note that $\mathfrak{I}_j/\mathfrak{K}_{k-1}$ are CCR and $\mathfrak{K}_k/\mathfrak{K}_{k-1}$ are ∞ -homogeneous continuous trace C^* -algebras. Hence, using the argument for the general step in the proof of Theorem 2.1 and Lemma 2.8 repeatedly we obtain

$$\operatorname{RR}(\mathfrak{I}_j/\mathfrak{K}_{k-1}) \leq \max\{1, \operatorname{RR}(\mathfrak{I}_j/\mathfrak{K}_k)\}$$

for $1 \leq k \leq j$. This implies that

$$\operatorname{RR}(\mathfrak{I}_j) \le \max\{1, \operatorname{RR}(\mathfrak{D}_j)\} \le \max\{1, \operatorname{RR}(\mathfrak{D})\}.$$

Note that \mathfrak{D}_i are subquotients of \mathfrak{D} . Since the union of \mathfrak{I}_i is dense in \mathfrak{A} , we have

 $\operatorname{RR}(\mathfrak{A}) \leq \sup \operatorname{RR}(\mathfrak{I}_j) \leq \max\{1, \operatorname{RR}(\mathfrak{D})\}\$

as desired.

As an important application, we obtain

Theorem 2.9. Let G be a connected nilpotent Lie group and $C^*(G)$ its group C^* -algebra. Then

$$\operatorname{RR}(C^*(G)) = \dim G_1^\wedge,$$

where G_1^{\wedge} is the space of all 1-dimensional representations of G.

Proof. Since $C^*(G)$ (or G) is CCR and we have the following exact sequence:

$$0 \to \mathfrak{I} \to C^*(G) \to C_0(G_1^{\wedge}) \to 0,$$

where \Im is a CCR C^* -algebra that has no finite dimensional irreducible representations (note that since G is a solvable Lie group, the Lie's theorem tells us that G (or $C^*(G)$) has no finite dimensional irreducible representations except 1-dimensional ones), we can use Theorem 2.7 so that

$$\operatorname{RR}(C_0(G_1^{\wedge})) \leq \operatorname{RR}(C^*(G)) \leq \max\{1, \operatorname{RR}(C_0(G_1^{\wedge}))\}.$$

By [3, Proposition 1.1] we have $\operatorname{RR}(C_0(G_1^{\wedge})) = \dim G_1^{\wedge}$. Moreover, [14] implies that $\dim G_1^{\wedge} = 0$ if and only if G is isomorphic to the k-torus T^k . In this case we have $\operatorname{RR}(C^*(G)) = 0$ since $C^*(T^k) \cong C_0(Z^k)$ by the Fourier transform and $C_0(Z^k) \cong \bigoplus_{Z^k} C$ the c_0 -direct sum of C. Furthermore, by [14] we have $\dim G_1^{\wedge} = 1$ if and only if G is isomorphic to either $R \times T^k$ or R. In this case we have $\operatorname{RR}(C^*(G)) = 1$ since $C^*(R \times T^k) \cong C_0(R \times Z^k)$. If $\dim G_1^{\wedge} \ge 2$, then the inequalities obtained above imply the conclusion.

Remark. Note that the space G_1^{\wedge} is homeomorphic to the dual group $(G/[G,G])^{\wedge}$ of the quotient connected abelian Lie group G/[G,G] so that $G/[G,G] \cong R^s \times T^t$ and hence $G_1^{\wedge} \approx R^s \times Z^t$ for some $s, t \ge 0$. For G a connected nilpotent Lie group, it is shown by [14] that

$$sr(C^*(G)) = [\dim G_1^{\wedge}/2] + 1.$$

This generalizes the case for G a simply connected nilpotent Lie group by [17].

231

References

- C. A. Akemann, G. K. Pedersen and J. Tomiyama, *Multipliers of C^{*}-algebras*, J. Funct. Anal., 13(1973), 277-301.
- E. J. Beggs and D. E. Evans, The real rank of algebras of matrix valued functions, Internat. J. Math., 2(1991), 131-138.
- [3] L. G. Brown and G. K. Pedersen, C^{*}-algebras of real rank zero, J. Funct. Anal., 99(1991), 131-149.
- [4] J. Dixmier, C^{*}-algebras, North-Holland, Amsterdam, 1977.
- [5] N. Elhage Hassan, Rang réel de certaines extensions, Proc. Amer. Math. Soc., 123(1995), 3067-3073.
- [6] J. Hjelmborg and M. Rørdam, On stability of C^{*}-algebras, J. Funct. Anal., 155(1998), 153-170.
- [7] E. Kaniuth, Group C^{*}-algebras of real rank zero or one, Proc. Amer. Math. Soc., 119(1993), 1347-1354.
- [8] K. Nagami, Dimension Theory, Academic Press, New York-London, 1970.
- M. Nagisa, H. Osaka and N.C. Phillips, Ranks of algebras of continuous C*-algebra valued functions, Canad. J. Math., 53(2001), 979-1030.
- [10] V. Nistor, Stable rank for a certain class of type I C*-algebras, J. Operator Theory, 17(1987), 365-373.
- [11] G. K. Pedersen, C^{*}-Algebras and their Automorphism Groups, Academic Press, London-New York-San Francisco, 1979.
- [12] M. A. Rieffel, Dimension and stable rank in the K-theory of C*-algebras, Proc. London Math. Soc., 46(1983), 301-333.
- [13] T. Sudo, Stable rank of the reduced C*-algebras of non-amenable Lie groups of type I, Proc. Amer. Math. Soc., 125(1997), 3647-3654.
- [14] T. Sudo, Dimension theory of group C^{*}-algebras of connected Lie groups of type I, J. Math. Soc. Japan, 52(2000), 583-590.
- [15] T. Sudo, Survey on the rank and structure theory of group C*-algebras of Lie groups, Ryukyu Math. J., 13(2000), 79-95.
- [16] T. Sudo, Stable rank of C^{*}-algebras of type I, Linear Algebra Appl., **383**(2004), 65-76.
- T. Sudo and H. Takai, Stable rank of the C*-algebras of nilpotent Lie groups, Internat. J. Math., 6(1995), 439-446.
- T. Sudo and H. Takai, Stable rank of the C*-algebras of solvable Lie groups of type I, J. Operator Theory, 38(1997), 67-86.
- [19] N. E. Wegge-Olsen, K-theory and C*-algebras, Oxford Univ. Press, Oxford-New York-Tokyo, 1993.