DOI QR코드

DOI QR Code

On the Trajectory Null Scrolls in 3-Dimensional Minkowski Space-Time E13

  • Ersoy, Soley (Department of Mathematics, Faculty of Arts and Sciences, Sakarya University) ;
  • Tosun, Murat (Department of Mathematics, Faculty of Arts and Sciences, Sakarya University)
  • Received : 2006.09.01
  • Published : 2008.03.31

Abstract

In this paper, the trajectory scroll in 3-dimensional Minkowski space-time $E_1^3$ is given by a firmly connected oriented line moving with Cartan frame along curve. Some theorems and results between curvatures of base curve and distribution parameter of this surface are obtained. Moreover, some theorems and results related to being developable and minimal of this surface are given. And also, some relationships among geodesic curvature, geodesic torsion and the curvatures of base curve of trajectory scroll are found.

Keywords

References

  1. H. Frank and O. Giering, Verallgemeinerte Regelflachen, Math. Z., 150(1976), 261-271. https://doi.org/10.1007/BF01221150
  2. H. H. Hacisalihoglu, Diferensiyel Geometri, Inonu Uni. Fen-Edeb. Fak., 1983
  3. R. T. Farouki, The approximation off non-degenerate offset surfaces, Comp. Aided Geom. Design, 3(1986), 15-43. https://doi.org/10.1016/0167-8396(86)90022-1
  4. B. Ravani and T. S. Ku, Bertrand offset and developable surfaces, Comp. Aided Geom. Design, 23(2)(1991), 145-152. https://doi.org/10.1016/0010-4485(91)90005-H
  5. A. T. Yang, Y. Kirson and B. Roth, On a kinematics theory for ruled surface, Proceedings of Fourth World Congress on the theory of Machines and Mechanisms, Newcastle Upon Tyne, England, September, pp. 737-742, 1975.
  6. Y. H. Kim and D. W. Yoon, Classification of ruled surfaces in Minkowski 3-spaces, Journal of Geometry and Physics, 49(1)(2004), 89-100. https://doi.org/10.1016/S0393-0440(03)00084-6
  7. A. Turgut and H. H. Hacisalihoglu, Time-like ruled surfaces in the Minkowski 3-space, Tr. J. of Math., 22(1998), 33-46, Tubitak.
  8. V. D. I. Woestijine, Minimal surfaces of 3-dimensional Minkowski Space, word Scientific Publishing, Singapore, 344-369, 1990.
  9. A. Kucuk, On the developable time-like trajectory ruled surfaces in a Lorentz 3-space $R_{1}^{3}$, Appl. Math. Comput., 157(2004), 483-489. https://doi.org/10.1016/j.amc.2003.09.001
  10. K. L. Duggal and A. Bejancu, Lightlike Submanifolds of Semi Riemannian manifolds and applications, Kluwer Academic Publishers, Dorecht,1996.
  11. A. Ferrandez,A. Gimenez and P. Lucas, Null helices in Lorentzian space forms, Int. J. Mod. Phys., A 16(2001), 48 45-63. https://doi.org/10.1142/S0217751X01005821
  12. B. Sahin, E. Kilic, and R. Gunes, Null Helices in $IR_{1}^{3}$, differential geometry dynamical systems, 3(2)(2001), 31-36.
  13. A. F. Yaliniz and H. H. Hacisalihoglu, Null generalized Helices in $L^{3}$and $L^{4}$, 3 and 4 dimensional Lorentzian space, Math. And Comp. Appl. 10(1)(2005),105-111.
  14. L. K. Graves, Codimension one isometric immersions between Lorentz space, Trans. Amer. Math. Soc., 252(1979), 367-392. https://doi.org/10.1090/S0002-9947-1979-0534127-4
  15. H. Balgetir. M. Bektas. and M. Ergut, Null scroll in the 3-dimensional Lorentzian space, Appl. Sciences, 5(1)(2003), 1-5.
  16. W. B. Bonnor, Null curves in a Minkowski space-time, Tensor N. S., 20(1969), 229-242.
  17. B. O'Neill, Semi-Riemannian Geometry, Academic Press, New York, 1983.
  18. K. Akutagawa and S. Nshkawa, The Gauss map and space-like surfaces with prescribed mean curvature in Minkowski 3-space, Thoku Math. J., 42(1990), 67-82. https://doi.org/10.2748/tmj/1178227694
  19. T. Ikaw, On curves and submanifolds indefinite Riemannian manifold, Tsukuba J. Math., 9(2)(1985), 353-371. https://doi.org/10.21099/tkbjm/1496160296

Cited by

  1. A STUDY ON A RULED SURFACE WITH LIGHTLIKE RULING FOR A NULL CURVE WITH CARTAN FRAME vol.49, pp.3, 2012, https://doi.org/10.4134/BKMS.2012.49.3.635