DOI QR코드

DOI QR Code

Photo Catalytic Activity of CNT-TiO2 Nano Composite in Degrading Anionic and Cationic Dyes

  • Kim, Sang-Jin (Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Im, Ji-Sun (Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Kang, Phil-Hyun (Radiation Application Research Division, Korea Atomic Energy Research Institute) ;
  • Kim, Tae-Jin (Core Technology Research Center for Fuel Cell) ;
  • Lee, Young-Seak (Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University)
  • Received : 2008.11.03
  • Accepted : 2008.12.10
  • Published : 2008.12.30

Abstract

A CNT-$TiO_2$ nano composite was prepared from titanium chloride ($TiCl_4$) via sol-gel process using multi walled carbon nano tube (MWCNT) followed by calcination at $450^{\circ}C$. Spectral analysis revealed that the formed $TiO_2$ resided on the carbon in anatase form. The effect of adsorption was investigated using aqueous solution of methylene blue and procion blue dye. The photochemical reaction of CNT-$TiO_2$ composite in aqueous suspensions was studied under UV illumination in batch process. The reaction was investigated by monitoring the discoloration of the dyes employing UV-Visible spectro-photometeric technique as a function of irradiation time. The catalyst composites were found to be efficient for the photodegradation of the dye.

Keywords

References

  1. Traversa, E.; Vona, M. L. D.; Nunziante,P.; Licoccia, S.; Sasaki, T.; Koshizaki, N. J. Sol-Gel Sci. Technol, 2000, 19, 733. https://doi.org/10.1023/A:1008787412057
  2. Suarez-Parra, R.; Hernandez-Perez, I.; Lopez-Ayala, S.; Rincon, M. E.; Roldan-Ahumada, M. C. Solar Energy Mater. Solar Cells 2003, 76, 189. https://doi.org/10.1016/S0927-0248(02)00346-X
  3. Li, D.; Haneda, H. Photochem. Photobiol. Chem. 2003, 160, 203. https://doi.org/10.1016/S1010-6030(03)00212-0
  4. Tang, W. Z.; An, H. Chemosphere 1995, 31, 4171. https://doi.org/10.1016/0045-6535(95)80016-E
  5. Jain, R.; Mathur, M.; Sikarwar, S.; Mittal, A. J. Environ. Manage. 2007, 85, 956. https://doi.org/10.1016/j.jenvman.2006.11.002
  6. Aarthi, T.; Narahari, P.; Madras, G. J. Hazard. Mater. 2007, 149, 725. https://doi.org/10.1016/j.jhazmat.2007.04.038
  7. Shourong, Z.; Qingguo, H.; Jun, Z.; Bingkun, W. J. Photoch. Photobio. A 1997, 108, 235. https://doi.org/10.1016/S1010-6030(97)00014-2
  8. Toyoda, M.; Nanbu, Y.; Kitob, T.; Himnob, M.; Inagakib, M. Desalination 2003, 59, 273.
  9. Orimoto, T. T.; Ito, S.; Kuwabata, S.; oneyama, H. Y. Environ. Sci. Technol. 1996, 30, 1275. https://doi.org/10.1021/es950483k
  10. Tao, Y.; Wu, C. Y.; Mazyck, D. W. Ind. Eng. Chem. Res. 2006, 45, 5110. https://doi.org/10.1021/ie0600341
  11. El-Sheikh, A. H.; Newman, A. P.; Al-paffaee, H.; Phall, S.; Cresswell, N.; York, S. Surf. Coat. Technol. 2004, 187, 284. https://doi.org/10.1016/j.surfcoat.2004.03.012
  12. Tryba, B.; Morawski, A.W.; Inagaki, M. Appl. Catal. B: Environ. 2003, 41, 427. https://doi.org/10.1016/S0926-3373(02)00173-X
  13. Yoneyama, H.; Torimoto, T. Catal. Today 2000, 58, 133. https://doi.org/10.1016/S0920-5861(00)00248-0
  14. Li, D.; Haneda, H. Photochem. Photobiol. Chem. 2003, 160, 203. https://doi.org/10.1016/S1010-6030(03)00212-0
  15. Takeda, N.; Iwata, N.; Torimoto, T.; Yoneyama, H. J. Catal. 1998, 177, 240. https://doi.org/10.1006/jcat.1998.2117
  16. Georgakilas, V.; Gournis, D.; Tzitzios, V.; Pasquato, L.; Guldie, D. M.; Prato, M. J. Mater. Chem. 2007, 17, 2679. https://doi.org/10.1039/b700857k
  17. Knite, M.; Tupureina, V.; Fuith, A.; Zavickis, J.; Teteris, V. Mater. Sci. Eng. C 2007, 27, 1125. https://doi.org/10.1016/j.msec.2006.08.016
  18. Lee, J. M.; Palanivelu, K.; Lee, Y. S. Solid State Phenom. 2008, 135, 85. https://doi.org/10.4028/www.scientific.net/SSP.135.85
  19. Enache, C. S.; Schoonman, J.; krol, R. V. Appl. Surf. Sci. 2006, 252, 6342. https://doi.org/10.1016/j.apsusc.2005.08.038
  20. Sun, J.; Iwasa, M.; Gao, L.; Zhang, Q. H. Carbon 2004, 42, 895. https://doi.org/10.1016/j.carbon.2004.01.074

Cited by

  1. Evaluating the Degree of Macrodispersion of Carbon Nanotubes using UV-VIS-NIR Absorption Spectroscopy vol.10, pp.1, 2009, https://doi.org/10.5714/CL.2009.10.1.014
  2. Composite vol.2014, pp.1687-529X, 2014, https://doi.org/10.1155/2014/475713
  3. Synthesis of zinc oxide and carbon nanotube composites by CVD method: photocatalytic studies vol.24, pp.1, 2017, https://doi.org/10.1007/s10934-016-0247-3
  4. Synthesis and photocatalysis study of multiwalled carbon nanotubes grown in a lead-based microspherical support vol.26, pp.6, 2018, https://doi.org/10.1080/1536383X.2018.1439022