DOI QR코드

DOI QR Code

Preparation and Characterization of Pitch/Cokes Composite Anode Material for High Power Lithium Secondary Battery

  • Yu, Lan (Dept. of Materials Science and Engineering, Myongji University) ;
  • Kim, Ki-Jung (Dept. of Materials Science and Engineering, Myongji University) ;
  • Park, Dae-Yong (Dept. of Chemical Engineering, Myongji University) ;
  • Kim, Myung-Soo (Dept. of Chemical Engineering, Myongji University) ;
  • Kim, Kab-Il (Dept. of Electrical Engineering, Myongji University) ;
  • Lim, Yun-Soo (Dept. of Materials Science and Engineering, Myongji University)
  • Received : 2008.06.13
  • Accepted : 2008.08.29
  • Published : 2008.09.30

Abstract

Petroleum pitch and coke with wet mixture method or with dry mixture method were investigated to develop the composite anodic carbon material of high power lithium ion battery. Cokes coated with pitch were obtained by the heat treatment of mixture of cokes and pitch with different weight ratios at $800{\sim}1200^{\circ}C$. The charge and discharge characteristic of the consequent composite anodic carbon material assembled in batteries was tested. Cokes with wet mixture method have a smooth surface and their capacity changed little with changing temperature and content as compared to the cokes with dry mixture method. Although the reversible capacities showed different values by the anode manufacturing method, the composite anode with the mixture of 20 wt% of petroleum pitch and 80 wt% of coke showed the higher power capability and initial efficiency than the pitch based anode. However, the reversible capacity of the composite anode showed the reduced value as compared with the pitch based anode.

Keywords

References

  1. 한국전자산업진흥회, "리튬이온 이차전지 산업동향", 2007, 6, 10.
  2. 한국과학기술연구원, "리튬 2차전지에 관한 동향분석", 2005, 9, 20.
  3. Manev, V.; Naidenov, I.; Puresheva, B; Zlatilova, P.; Pistoi, G.; J. Power Sources 1995, 55, 211. https://doi.org/10.1016/0378-7753(95)02192-J
  4. Simon, B.; Flandrois, S.; Guerin, K.; Fevrier-Bouvier, A.; Teulat, I.; Biensan, P. J. Power Sources 1999, 312.
  5. Kim, J. S. J. Power Sources 2001, 70.
  6. Sato, Y.; Tunuma, K.; Takayama, T; Kobayakawa, K.; Kawai, T.; Yokoyama, A. J. Power Sourses 2001, 97-98, 165. https://doi.org/10.1016/S0378-7753(01)00677-2
  7. Concheso, A.; Santamaria, R.; Menendez, R.; Alcantara, R.; Lavela, P.; Tirado, J. L. J. Power Sourses 2006, 161, 1324. https://doi.org/10.1016/j.jpowsour.2006.04.148
  8. Endo, M.; Kim, C.; Nishimura, K.; Fujino, T.; Miyashita, K. Carbon 2000, 38, 183. https://doi.org/10.1016/S0008-6223(99)00141-4
  9. Yata, S.; Kinoshita, H.; Komori, M.; Ando, N.; Anekawa, A.; Hashimoto, T. Extended Abstracts of 60th Annual Meeting of the Electrochemical Society of Japan, Tokyo, Japan, 1993, 2G09.
  10. 박수진, 탄소재료 원리와 응용. 대영사, 2006, 250.
  11. 류지헌, 오은영, 오승모, J. Korean Electrochemical Soc., 2004, 7, 32. https://doi.org/10.5229/JKES.2004.7.1.032
  12. Sato, K.; Noguchi, M.; Demachi, A.; Oki, N.; Endo, M. Science, 1994, 264 556. https://doi.org/10.1126/science.264.5158.556
  13. Mobuchi, A.; Tokumitsu, K.; Fujimoto, H.; Kasuh, T. J. Electrochem. Soc., 1995, 142, 1041. https://doi.org/10.1149/1.2044128
  14. Winter, M.; Novak, P.; Monnier, A. J. Electrochem. Soc., 1998, 145, 428. https://doi.org/10.1149/1.1838281
  15. Dahn, J. R.; Sileigh, A. K.; Reimers, J. N.; Zhong, Q.; Way, B. M. Electrochemica Acta, 1993, 38, 1179. https://doi.org/10.1016/0013-4686(93)80048-5
  16. Mochida, I.; Ku, C. H.; Yoon, S. H.; Korai, Y. J. Power Sources, 1998, 75, 214. https://doi.org/10.1016/S0378-7753(98)00101-3
  17. Zheng, T.; Liu, Y.; Fuller, S.; Tseng, U.; Sackon, V.; Dahn, J. R. J. Electrochem Soc., 1995, 142, 2851.
  18. Takami, N.; Satoh, A.; T. Ohsaki, T. Ekectrochim Acta, 1997, 42, 2537. https://doi.org/10.1016/S0013-4686(96)00446-X
  19. Dahn. J. R.; Sileigh, A. K.; Reimers, J. N.; Zhong, Q.; Way, B. M. Electrochimica Acta, 1993, 38, 1179. https://doi.org/10.1016/0013-4686(93)80048-5

Cited by

  1. Effect of potassium permanganate pretreatment of pitch on the textural properties of pitch-based activated carbons vol.12, pp.3, 2011, https://doi.org/10.5714/CL.2011.12.3.167
  2. Preparation and characterization of anode materials using expanded graphite/pitch composite for high-power Li-ion secondary batteries vol.40, pp.7, 2014, https://doi.org/10.1007/s11164-014-1660-3
  3. Nanocomposites based on transition metal oxides in polyvinyl alcohol for EMI shielding application vol.71, pp.2, 2014, https://doi.org/10.1007/s00289-013-1073-2
  4. Fabrication and Characterization of Pitch/Cokes/Natural Graphite Composites as Anode Materials for High-Power Lithium Secondary Batteries vol.25, pp.6, 2015, https://doi.org/10.3740/MRSK.2015.25.6.279
  5. Rate-capability response of graphite anode materials in advanced energy storage systems: a structural comparison vol.17, pp.1, 2016, https://doi.org/10.5714/CL.2016.17.1.039
  6. Characterization of SEI layer for Surface Modified Cathode of Lithium Secondary Battery Depending on Electrolyte Additives vol.19, pp.3, 2016, https://doi.org/10.5229/JKES.2016.19.3.69