DOI QR코드

DOI QR Code

Improved Photo Degradation of Rhodamine B Dye using Iron Oxide/Carbon Nanocomposite by Photo-Fenton Reaction

  • Kim, Min-Il (Dept. of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University) ;
  • Im, Ji-Sun (Dept. of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University) ;
  • In, Se-Jin (Dept. of Fire and Disaster Protection Engineering, Woosong University) ;
  • Kim, Hyuk (Hanil Green Tech Co., LTD.) ;
  • Kim, Jong-Gyu (Hanil Green Tech Co., LTD.) ;
  • Lee, Young-Seak (Dept. of Fine Chemical Engineering and Applied Chemistry, BK21-E²M, Chungnam National University)
  • Received : 2008.08.12
  • Accepted : 2008.09.17
  • Published : 2008.09.30

Abstract

A nanocomposite consisting of $Fe_3O_4$ and MWCNT was produced via sol-gel technique using $FeCl_3$ along with MWCNT by calcination at $300^{\circ}C$. The degradation effect of rhodamine B dye has been investigated under UV illumination in a darkroom. The degradation reaction was studied by monitoring the discoloration of dye as a function of irradiation time using UV-visible spectrophotometeric technique. The $Fe_3O_4$-MWCNT samples have continuous degradation ability under the UV illumination with the first order kinetics and the dye removal was better than in the pristine $Fe_3O_4$. The resultant composite catalyst was found to be efficient for the photo-Fenton reaction of the dye.

Keywords

References

  1. Gunseli, T.; Mustafa, O. Dyes Pigments 2006, 70, 117. https://doi.org/10.1016/j.dyepig.2005.05.005
  2. Robens, J. F.; Diu, G. S.; Ward, J. M.; Joiner, J. R.; Griesemer, R. A.; Douglas, J. F. Toxicol. Appl. Pharm. 1980, 54, 431. https://doi.org/10.1016/0041-008X(80)90170-2
  3. So, C. M.; Cheng, M. Y.; Yu, J. C.; Wong, P. K. Chemosphere 2002, 46, 905. https://doi.org/10.1016/S0045-6535(01)00153-9
  4. Swarnalatha, B.; Anjaneyulu, Y. J. Mol. Catal. A -Chem. 2004, 223, 161. https://doi.org/10.1016/j.molcata.2004.03.058
  5. Hsueh, C. L.; Huang, Y. H.; Wang, C. C.; Chen, C. Y. Water Sci. Technol. 2006, 53, 195.
  6. Farr'e, M. J.; Franch, M. I.; Malato, S.; Ayll'on, J. A.; Peral, J.; Dom'enech Chemosphere 2005, 58, 1127. https://doi.org/10.1016/j.chemosphere.2004.09.064
  7. Da Hora Machado, A. E.; Xavier, T. P.; de Souza, D. R.; de Miranda, J. A.; Mendonsa-Duarte, E. T. F.; Ruggiero, R.; de Oliveira, L.; Sattler, C. Sol. Energy 2005, 77, 583.
  8. Fenton, H. J. H. J. Chem. Soc. 1894, 65, 899. https://doi.org/10.1039/ct8946500899
  9. Kavitha, V.; Palanivelu, K. J. Photochem. Photobio. 2005, 170, 83. https://doi.org/10.1016/j.jphotochem.2004.08.003
  10. Feng, J.; Hu, X.; Yue, P. L. Water Res. 2005, 39, 89. https://doi.org/10.1016/j.watres.2004.08.037
  11. Chacon, J. M.; Leal, M. T.; Sanchez, M.; Bandala, E. R. Dyes Pigments 2006, 69, 144. https://doi.org/10.1016/j.dyepig.2005.01.020
  12. Valca' rcel, M.; Ca' rdenas, S.; Simonet, B. M. Anal. Chem. 2007, 79, 4788. https://doi.org/10.1021/ac070196m
  13. Inagaki, M.; Kaneko, K.; Nishizawa, T. Carbon 2004, 42, 1401. https://doi.org/10.1016/j.carbon.2004.02.032
  14. Georgakilas, V.; Gournis, D.; Tzitzios, V.; Pasquato, L. J. Mater. Chem. 2007, 17, 2679. https://doi.org/10.1039/b700857k
  15. Knite, M.; Tupureina, V.; Fuith, A.; Zavickis, J.; Teteris, V. Mat. Sci. Eng. C 2007, 27, 1125. https://doi.org/10.1016/j.msec.2006.08.016
  16. Lee, J. M.; Palanivelu, K.; Lee, Y. S., Solid State Phenomena 2008, 135, 85. https://doi.org/10.4028/www.scientific.net/SSP.135.85
  17. Spacek, W.; Bauer, R. Chemosphere 1995, 30, 477. https://doi.org/10.1016/0045-6535(94)00426-U
  18. Balanosky, E.; Herrera, F.; Lopez, A.; Kiwi, J. Water Res. 2000, 34, 582. https://doi.org/10.1016/S0043-1354(99)00150-5
  19. Zhou, T.; Li, Y.; Ji, J.; Wong, F. S.; Lu, X. Sep. Purif. Technol. 2008, 62, 551. https://doi.org/10.1016/j.seppur.2008.03.008

Cited by

  1. O Nanocomposite with High Solar Light Photocatalytic Activity and Efficient Adsorption Capacity for Toxic Dye Removal vol.53, pp.40, 2014, https://doi.org/10.1021/ie5018173
  2. Synthesis, Optical, Morphological and Magnetic Properties of Hematite Nanorods in Deep Eutectic Solvent with its Antibacterial and Photocatalytic Applications vol.31, pp.4, 2019, https://doi.org/10.14233/ajchem.2019.21817