DOI QR코드

DOI QR Code

Electrospun Nanocomposite Fiber Mats of Zinc-Oxide Loaded Polyacrylonitrile

  • Nataraj, S.K. (Carbon Materials Lab, Alan G. MacDiarmid Energy Research Institute, Chonnam National University) ;
  • Kim, B.H. (Carbon Materials Lab, Alan G. MacDiarmid Energy Research Institute, Chonnam National University) ;
  • Yun, J.H. (Carbon Materials Lab, Alan G. MacDiarmid Energy Research Institute, Chonnam National University) ;
  • Lee, D.H. (Carbon Materials Lab, Alan G. MacDiarmid Energy Research Institute, Chonnam National University) ;
  • Aminabhavi, T.M. (Carbon Materials Lab, Alan G. MacDiarmid Energy Research Institute, Chonnam National University) ;
  • Yang, K.S. (Carbon Materials Lab, Alan G. MacDiarmid Energy Research Institute, Chonnam National University)
  • Received : 2008.05.02
  • Accepted : 2008.06.03
  • Published : 2008.06.30

Abstract

We have demonstrated the feasibility of using electrospinning method to fabricate long and continuous composite nanofiber sheets of polyacrylonitrile (PAN) incorporated with zinc oxide (ZnO). Such PAN/ZnO composite nanofiber sheets represent an important step toward utilizing carbon nanofibers (CNFs) as materials to achieve remarkably enhanced physico-chemical properties. In an attempt to derive these advantages, we have used a variety of techniques such as field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and high resolution X-ray diffraction (HR-XRD) to obtain quantitative data on the materials. The CNFs produced are in the diameter range of 100 to 350 nm after carbonization at $1000^{\circ}C$. Electrical conductivity of the random CNFs was increased by increasing the concentration of ZnO. A dramatic improvement in porosity and specific surface area of the CNFs was a clear evidence of the novelty of the method used. This study indicated that the optimal ZnO concentration of 3 wt% is enough to produce CNFs having enhanced electrical and physico-chemical properties.

Keywords

References

  1. Chopra, K. L.; Das, S. R. "Thin Film Solar Cells", Eds. Plenum, New York, 1983.
  2. Muller, J.; Fresenius, S. W. J. Anal. Chem. 1994, 349, 380. https://doi.org/10.1007/BF00326603
  3. Hingorani, S.; Pillai, V.; Kumar, P.; Multani, M. S.; Shah, D. O. Mater. Res. Bull. 1993, 28, 1303. https://doi.org/10.1016/0025-5408(93)90178-G
  4. Kong, L.B.; Li, F. Zhang, L.Y.; Yao, X. J. Mater. Sci. Lettr. 1998,17,769. https://doi.org/10.1023/A:1006635616836
  5. Shih, W.C., Wu, M.S. J. Cryst. Growth 1994,137,319. https://doi.org/10.1016/0022-0248(94)90968-7
  6. Troy, C.T. Photonics Spectra 1997,31,34.
  7. Vanheusden, K.; Seager, C. H.; Warren, W. L.; Tallant, D. R.; Caruso, J.; Hampden-Smith, M. J.; Kodas, T. T. J. Lumines 1997,75,11. https://doi.org/10.1016/S0022-2313(96)00096-8
  8. Mo, C. M.; Li, Y. H.; Lin, Y. S.; Zhang, Y.; Zhang, L. P. J. Appl. Phys. 1998, 83, 4389. https://doi.org/10.1063/1.367198
  9. Li, Q. H.; Wan, Q.; Chen, Y. J.; Wang, T. H. Appl. Phys. Lett. 2004, 85, 636. https://doi.org/10.1063/1.1773613
  10. Iijima, S. Nature 1991, 354, 56. https://doi.org/10.1038/354056a0
  11. Rodriguez, N. M.. J. Mater. Res. 1993, 8, 3233. https://doi.org/10.1557/JMR.1993.3233
  12. Dekker, C. Phys. Today. 1999, 5, 22.
  13. Rodriguez, N. M; Chambers, A.; Baker, R. T. K. Langmuir 1995, 11, 3862. https://doi.org/10.1021/la00010a042
  14. Jason, J. G.; Haoqing, H.; Qing, L.; Matthew, J.G.; Andreas, G.; Darrell, H. R.; Frank, W. H.; Stephen, Z. D. J. Am. Chem. Soc. 2004, 126, 15754. https://doi.org/10.1021/ja048648p
  15. Kruk, M.; Dufour, B.; Celer, E. B.; Kowalewski, T.; Jaroniec, M.; Matyjaszewski, K. Chem. Mater. 2006, 18, 1417. https://doi.org/10.1021/cm0516154
  16. Tang, C.; Qi, K.; Wooley, K. L.; Matyjaszewski, K.; Kowalewski, T. Angew. Chem. Int. Ed. 2004, 43, 3783.
  17. Chen, J. T.; Shin, K.; Leiston-Belanger, J. M.; Zhang, M.; Russell, T. P. Adv. Funct. Mater. 2006, 16, 1476. https://doi.org/10.1002/adfm.200500769
  18. Reneker, D. H.; Chun, I. Nanotechnology 1996, 7, 216. https://doi.org/10.1088/0957-4484/7/3/009
  19. Bognitzki, M.; Czado, W.; Frese, T.; Schaper, A.; Hellwig, M.; Steinhart, M.; Greiner, A.; Wendroff, J. H. Adv. Mater. 2001, 13, 70. https://doi.org/10.1002/1521-4095(200101)13:1<70::AID-ADMA70>3.0.CO;2-H
  20. Kim, C.; Ngoc, B. T. N.; Yang, K. S.; Kojima, M.; Kim, Y. A.; Kim, Y. J.; Endo, M.; Yang S. C. Adv. Mater. 2007, 19, 2341. https://doi.org/10.1002/adma.200602184
  21. Nataraj, S. K.; Kim, B. H.; Yun, J. H.; Lee D. H.; Aminabhavi, T. M.; Yang, K. S. Synthetic Metals (Communicated, 2008).
  22. He, J. H.; Liu, H. M. Nonlinear Analysis 2005, 63, 919. https://doi.org/10.1016/j.na.2005.01.086
  23. He, J. H.; Wu Y.; Zuo, W. W. Polymer 2005, 46, 12637. https://doi.org/10.1016/j.polymer.2005.10.130
  24. Baumgarten, P. K. J. Coll. Interf. Sci.1971, 36, 71. https://doi.org/10.1016/0021-9797(71)90241-4
  25. Zhang, Y.; Lin, B.; Sun, X.; Fu, Z. Appl. Phys. Lett. 2005, 86, 131910. https://doi.org/10.1063/1.1891288

Cited by

  1. Silanization of ZnO nanofibers by tetraethoxysilane vol.134, pp.40, 2017, https://doi.org/10.1002/app.45378
  2. Materials from Nanosized ZnO and Polyacrylonitrile: Properties Depending on the Design of Fibers (Electrospinning or Electrospinning/Electrospraying) vol.27, pp.4, 2017, https://doi.org/10.1007/s10904-017-0536-6
  3. Rheological Properties of Poly(lactic acid) Solutions Added with Metal Oxide Nanoparticles for Electrospinning pp.1572-8900, 2017, https://doi.org/10.1007/s10924-017-1155-6