A Technique for Building Occupancy Maps Using Stereo Depth Information and Its Application

스테레오 깊이 정보를 이용한 점유맵 구축 기법과 응용

  • Kim, Nak-Hyun (Dept. of Digital Information Eng., Hankuk University of Foreign Studies) ;
  • Oh, Se-Jun (Dept. of Digital Information Eng., Hankuk University of Foreign Studies)
  • 김낙현 (한국외국어대학교 디지털정보공학) ;
  • 오세준 (한국외국어대학교 디지털정보공학)
  • Published : 2008.05.25

Abstract

An occupancy map is a representation methodology describing the region occupied by objects in 3D space, which can be utilized for autonomous navigation and object recognition. In this paper, we describe a technique for building an occupancy map using depth data extracted from stereo images. In addition, some techniques are proposed for utilizing the occupancy map for the segmentation of object regions. After the geometric information on the ground plane is extracted from a disparity image, the occupancy map is constructed by projecting each matched point to the ground plane-based 3D space. We explain techniques for extracting moving object regions using the occupancy map and present experimental results using real stereo images.

점유맵은 3차원 공간상에서 장애물이 놓인 부분과 빈 공간을 구분해서 2차원 평면상에 표현하는 방식으로 자율 내비게이션이나 물체 인식 등을 위해 사용된다. 본 논문에서는 스테레오 영상에서 추출된 깊이 정보를 활용하여 3차원 공간의 점유맵을 구축하고 그 정보를 물체 영역 추출에 활용하는 기법을 제안한다. 스테레오 깊이 영상에서 기반 평면을 추출한 다음, 각 정합점들을 기반 평면 중심 좌표계로 투사하여 점유맵을 추출한다. 본 연구에서는 이렇게 추출된 점유맵을 활용하여 실내외의 다양한 환경에서 움직임 물체 영역을 추출하였는데, 실제 실험 영상을 홍해 제안된 방식의 유용성을 확인한다.

Keywords

References

  1. A. Elfes, "Using occupancy grids for mobile robot perception and navigation," IEEE Computer, pp. 46-57, June 1989
  2. H. Moravec and A. Elfes, "High-resolution maps from wide-angle sonar,," Proc. IEEE Conf. on Robotics and Automation, March 1985
  3. D. Murray and C. Jennings, "Stereo vision based mapping and navigation for mobile robots," Proc. of IEEE Conf. on Robotics and Automation, 1997
  4. C. Braillon et al, "Fusion of stereo and optical flow data using occupancy grids," Proc. IEEE Conf. on Intelligent Transportation Systems," 2006
  5. N. H. Kim and J. S. Park, "Segmentation of object regions using depth information," Proc. of IEEE Conf. on Image Process., 2004
  6. M. Bertozzi, A. Groggi, A. Fascioli, and S. Nichele, "Stereo vision-based vehicle detection," Proc. of IEEE Intelligent Vehicles Symp., 2000
  7. R. Labayrade, D. Aubert, and J. Tarel, "Real time obstacle detection in stereovision on non flat road geometry through V-disparity representation," Proc. of IEEE Conf. on Intelligent Transportation Systems, 2002
  8. R. Labayrade, D. Aubert, "In-vehicle obstacles detection and characterization by stereovision," Proc. of Int. Workshop on In-Vehicle Cognitive Computer Vision Systems, 2003
  9. Z. Hu, F. Lamosa, and K. Uchimura, "A complete U-V-disparity study for stereovision based 3D driving environment analysis," Proc. of IEEE Conf. on 3-D Digital Imaging and Modeling, 2005
  10. P. F. Felzenszwalb and D. P. Huttenlocher, "Efficient belief propagation for early vision," Proc. of IEEE Conf. Computer Vision and Pattern Recog., 2004
  11. D. A. Forsyth and J. Ponce, Computer Vision: A Modern Approach, Prentice Hall, 2003