DOI QR코드

DOI QR Code

Development of Estimation Algorithm of Latent Ability and Item Parameters in IRT

문항반응이론에서 피험자 능력 및 문항모수 추정 알고리즘 개발

  • Choi, Hang-Seok (Center for Genome Research, Samsung Biomedical Research Institute) ;
  • Cha, Kyung-Joon (Department of Mathematics, Hanyang University) ;
  • Kim, Sung-Hoon (Department of Education, Dongguk University) ;
  • Park, Chung (Department of Early Childhood Education, Pusan National University) ;
  • Park, Young-Sun (Department of Mathematics, Hanyang University)
  • 최항석 (삼성생명과학연구소 유전체연구센터) ;
  • 차경준 (한양대학교 수학과) ;
  • 김성훈 (동국대학교 교육학과) ;
  • 박정 (부산대학교 유아교육학과) ;
  • 박영선 (한양대학교 수학과)
  • Published : 2008.05.30

Abstract

Item response theory(IRT) estimates latent ability of a subject based on the property of item and item parameters using item characteristics curve(ICC) of each item case. The initial value and another problems occurs when we try to estimate item parameters of IRT(e.g. the maximum likelihood estimate). Thus, we propose the asymptotic approximation method(AAM) to solve the above mentioned problems. We notice that the proposed method can be thought as an alternative to estimate item parameters when we have small size of data or need to estimate items with local fluctuations. We developed 'Any Assess' and tested reliability of the system result by simulating a practical use possibility.

문항반응이론(Item response theory: IRT)에서는 문항이 가지고 있는 특성을 기초로 피험자의 능력을 추정하고 동시에 각 문항별 문항특성곡선(Item characteristics curve: ICC)을 이용하여 문항모수를 추정하게 된다. 그러나 모수추정에 있어서 최대 우도추정의 경우는 초기값과 다른 여러 문제들이 발생할 수 있다. 본 연구에서는 추정 문제 해결방법의 대안으로 점근적 근사화 방법(Asymptotic approximation method: AAM)을 제안한다. 이는 자료의 수가 적거나 국소 변동이 있는 경우에 효과적인 추정방법이라고 할 수 있다. 이에 개발된 'Any Assess' 시스템을 모의실험을 통하여 신뢰성을 검정하였다.

Keywords

References

  1. 박영선, 차경준, 장창원 (2003a).IRT 모수추정에서 초기값에 관한 연구, <한국통계학회 2003년 춘계학술발표회 논문집>, 7-12
  2. 박영선, 진정언, 차경준, 이종성, 박정, 김성훈, 이원식, 이재화 (2003b). IRT에서 피험자 능력 및 문항모수 추정 알고리즘 개발, <한국통계학회 2003년 추계학술발표회 논문집>, 149-154
  3. 성태제 (1994). 대학별고사를 위한 문항분석, 표준점수, 검사동등화, <한국통계학회 논문집>, 1, 206-214
  4. 이종성 (1990). <문항반응이론과 응용>, 대광문화사
  5. Andersen, E. B. (1970). Asymptotic properties of conditional maximum-likelihood estimators, Journal of the Royal Statistical Society, Ser. B, 32, 283-301
  6. Baker, F. B. (1992). Item Response Theory: Parameter Estimation Technique, Marcel Dekker, New York
  7. Birnbaum, A. (1968). Test scores, su$\pm$cient statistics, and the information structures of tests. In Lord, F. M. and Novick, M. R., Statistical Theories of Mental Testscores, Reading, Mass.: Addison & Wesley
  8. Bock, R. D. and Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm, Psychometrika, 46, 443-459 https://doi.org/10.1007/BF02293801
  9. Bock, R. D. and Lieberman, M. (1970). Fitting a response model for n dichotomously scored items. Psychometrika, 35, 179-197 https://doi.org/10.1007/BF02291262
  10. Cohen, A. S., Bottge, B. A. andWells, C. S. (2001). Using item response theory to assess effects of mathematics instruction in special populations, Exceptional Childeren, 68 23-44 https://doi.org/10.1177/001440290106800102
  11. Craven, P. and Wahba, G. (1977). Smoothing Noisy Data with Spline Functions: Estimating the Correct Degree of Smoothing by the Method of Generalized CrossValidation. Technical Report No. 445, Madison, Department of Statistics, University of Wisconsin
  12. Foutz, R. V. (1977). On the unique consistent solution to the likelihood equations, Journal of the American Statistical Association, 72, 147-148 https://doi.org/10.2307/2286925
  13. Hambleton, R. K. and Cook, L. L. (1977). Latent trait models and their use in the analysis of educational test data, Journal of Education Measurement, 14, 75-96 https://doi.org/10.1111/j.1745-3984.1977.tb00030.x
  14. Kale, B. K. (1962). On the solution of likelihood equations by iteration processes. The multiparametric case, Biometrika, 49, 479-486 https://doi.org/10.1093/biomet/49.3-4.479
  15. Lee, S. and Terry, R. (2005). IRT-FIT: SAS macros for fitting item response theory(IRT) models, Presented at SUGI 30th Conference in Philadelphia
  16. Looney, M. A. and Spray, J. A. (1992). Effects of violating local independence on IRT parameter estimation for the Binomial Trials model, Research Quarterly for Exercise and Sport, 63, 356-359 https://doi.org/10.1080/02701367.1992.10608756
  17. Lord, F. M. (1953). Estimation of latent ability and item parameters when there are omitted responses, Psychometrika, 39, 247-264 https://doi.org/10.1007/BF02291471
  18. Lord, F. M.(1983). Statistical bias in maximum likelihood estimators of item parameters, Psychometrika, 48. 425-435 https://doi.org/10.1007/BF02293684
  19. Mislevy, R. J. and Bock, R. D. (1990). BILOG 3: Item Analysis and Test Scoring with Binary Logistic Model , Mooresville IN: Scientific Software, Inc
  20. Mislevy, R. J. and Wu, P. K. (1988). Inferring Examinee Ability When Some Item Responses are Missing, (Research Report 88-48-ONR), Princeton, N.J.: Educational Testing Service
  21. Muraki, E. (2000). RESGEN: A Computer Program to Generate Item Response Vector,Princeton: ETS
  22. Samejima, F. (1973). A comment on Birnbaum's three-parameter logistic model in the latent trait theory, Psychomtrika, 38, 221-233 https://doi.org/10.1007/BF02291115
  23. Stocking, M., Wingersky, M. S., Lees, D. M., Lennon, V. and Lord, F. M. (1973). A Program for Estimating the Relative Effciency of Tests at Various Ability Levels, for Equating True Scores and for Predicting Bivariate Distributions of Observed Socres, Research Memorandum 73-24, Princeton, N.J.: Educational Testing Service
  24. waminathan, H. and Gifford, J. A. (1986). Bayesian estimation in the three-parameter logistic model, Psychometrika, 51, 589-601 https://doi.org/10.1007/BF02295598
  25. Thissen, D. and Wainer, H. (1982). Some standard errors in item response theory, Psychometrika, 47, 397-412 https://doi.org/10.1007/BF02293705
  26. Wingersky, M. S., Barton, M. A. and Lord, F. M.(1982). LOGIST user's guide, Princeton, NJ: Educational Testing Service
  27. Wollack, J. A., Bolt, D. M., Cohen, A. S., Lee, Y. S. (2002). Recovery of item parameters in the nominal response model: A comparision of marginal maximum likelihood estimation and Markov chain Monte Carlo estimation, Applied Psychological Measurement, 26, 339-351 https://doi.org/10.1177/0146621602026003007