초록
6 시그마는 백만 기회당 3.4개의 결점만을 갖는 최고의 품질수준을 의미한다. 일반적으로 높은 시그마 품질수준은 고객들에게 높은 만족도를 부여하는 것으로 알려져 있다. 공정능력지수들과 시그마 품질수준 $Z_{st}$는 6시그마 산업에서 공정능력을 평가하기 위하여 널리 이용되고 있다 공정능력지수에 관한 대부분의 평가들은 공정능력분석에 대해 경우에 따라 믿기 어려운 상황을 초래할 수도 있는 점 추정에 초점을 두고 있다. 본 논문에서는 현장 실무자들이 공정능력 여부를 결정하기 위하여 사용하고 있는 6시그마 품질수준 $Z_{st}$와 공정능력지수들 $C_p$, $C_{pk}$와 $C_{pm}$에 대하여 몇 가지 통계적 추정문제를 기초로 보다 효율적인 검정 방법에 대하여 제안, 연구하였다. 제안된 붓스트랩 검정 방법에 근거한 모의실험 결과는 공정분포의 정규성 여부에 관계없이 그리고 복잡한 계산 과정 없이 보다 효율적으로 적용될 수 있음을 입증하고 있다.
Six sigma is the rating that signifies "best in clas", with only 3.4 defects per million units or operations. Higher sigma quality level is generally perceived by customers as improved performance by assigning a correspondingly higher satisfaction score. The process capability indices and the sigma level $Z_{st}$ have been widely used in six sigma industries to assess process performance. Most evaluations on process capability indices focus on point estimates, which may result in unreliable assessments of process performance. In this paper, we consider statistical inference for process capability indices $C_p$, $C_{pk}$ and $C_{pm}$. Also, we study better testing procedure on assessing sigma level $Z_{st}$ and capability index $C_{pm}$, for practitioners to use in determining whether a given process is capable. The proposed method is easy to use and the decision making is more reliable. Whether a process is clearly normal or nonnormal, our bootstrap testing procedure could be applied effectively without the complexity of calculation. A numerical result based on our proposed method is illustrated.