References
- Allwein, E. L., Schapire, R. E. and Singer, Y. (2000). Reducing multiclass to binary: A unifying approach for margin classifiers, Journal of Machine Learning Research, 1,113-141 https://doi.org/10.1162/15324430152733133
- Dietterich, T. G. and Bakiri, G. (1995). Solving multiclass learning problems via errorcorrecting output codes, Journal of Artificial Intelligence Research, 2, 263-286
-
Kimeldorf, G. S. and Wahba, G. (1971). Some results on Tchebyche
$\pm$ an spline functions, Journal of Mathematical Analysis and Applications, 33, 82-95 https://doi.org/10.1016/0022-247X(71)90184-3 - Lee, Y., Lin, Y. andWahba, G. (2001). Multicategory support vector machines, Technical Report 1043, In Proceeding of the 33rd Symposium on the Interface
- Mercer, J. (1909). Functions of positive and negative type and their connection with the theory of integral equations, Philosophical Transactions of the Royal Society of London, Series A, 209, 415-446
- Rifkin, R. and Klautau, A. (2004). In defense of one-vs-all classification, The Journal of Machine Learning Research, 5, 101-141
- Shim, J., Hong, D. H., Kim, D. H. and Hwang, C. (2007). Multinomial kernel logistic regression via bound optimization approach, The Korean Communications in Statistics, 14, 507-516 https://doi.org/10.5351/CKSS.2007.14.3.507
- Suykens, J. A. K. and Vandewalle, J. (1999a). Least square support vector machine classifiers, Neural Processing Letters, 9, 293-300 https://doi.org/10.1023/A:1018628609742
- Suykens, J. A. K. and Vandewalle, J. (1999b). Multiclass least squares support vector machines, In Proceeding of the International Joint Conference on Neural Networks, 900-903
- Suykens, J. A. K. (2001). Nonlinear modelling and support vector machines, In Proceeding of the IEEE Instrumentation and Measurement Technology Conference, 287-294
- Vapnik, V. N. (1995). The Nature of Statistical Learning Theory, Springer, New York
- Vapnik, V. N. (1998). Statistical Learning Theory, John Wieley & Sons, New York
- Weston, J. and Watkins, C. (1998). Multi-Class SVM, Technical Report, 98-104, Royal Holloway University of London
Cited by
- An analysis of satisfaction index on computer education of university based on Fuzzy Decision Making Method vol.16, pp.4, 2013, https://doi.org/10.9717/kmms.2013.16.4.502