References
- Abramowitz, M. and Stegun, I. A. (1970). Handbook of Mathematical Functions, Dover Publications, New York
- Ali, M. M. and Woo, J. (2005a). Inferences on reliability P(Y < X) in a power function distribution, Journal of Statistics & Management Systems, 8, 681-686 https://doi.org/10.1080/09720510.2005.10701186
- Ali, M. M. and Woo, J. (2005b). Inference on reliability P(Y < X) in the Levy distribution, Mathematical and Computer Modelling, 41, 965-971 https://doi.org/10.1016/j.mcm.2004.06.020
- Ali, M. M. and Woo, J. (2005c). Inference on reliability P(Y < X) in a p-dimensional Rayleigh distribution, Mathematical and Computer Modelling, 42, 367-373 https://doi.org/10.1016/j.mcm.2004.04.008
- Gradshteyn, I. S. and Ryzhik, I. M. (1965). Table of Integrals, Series and Products, Academic Press, New York
- Johnson, N. L., Kotz, S. and Balakrishnan, N. (1994). Continuous Univariate Distributions, Vol. 1, John Wiley & Sons, New York
- McCool, J. I. (1991). Inference on P(X < Y ) in the Weibull case, Communications in Statistics-Simulation and Computations, 20, 129-148 https://doi.org/10.1080/03610919108812944
- Rohatgi, V. K. and Rahtigi, V. K. (1976). An Introduction To Probability Theory and Mathematical Statistics, John Wiley & Sons, New York
- Woo, J. (2006). Reliability P(Y < X), ratio X=(X + Y ) and a skewed-symmetric distribution of two independent random variables, In Proceedings of Korean Data & Information Science Society November 2006, 37-42
- Woo. J. (2007a). On reliability and UMVUE of right-tail probability in a half normal variable, Journal of the Korean Data & Information Science Society, 18, 259-267
- Woo. J. (2007b). Reliability in a half-triangle distribution and a skew-symmetric distribution, Journal of the Korean Data & Information Science Society, 18, 543-552