Abstract
This paper propose the traffic anomaly detection scheme based time series model. We apply ARIMA prediction model to this scheme and transform the value of the abnormal symptom into the probability value to maximize the traffic anomaly symptom detection. For this, we have evaluated the abnormal detection performance for the proposed model using total traffic and web traffic included the attack traffic. We will expect to have an great effect if this scheme is included in some network based intrusion detection system.
본 논문에서는 시계열 예측 모델을 이용하여 웡 또는 바이러스 등과 같은 공격 트래픽에 의해 네트워크상에 발생할 수 있는 트래픽 이상 징후를 탐지할 수 있는 예측 모델 기반 트래픽 이상 징후 탐지 기법을 제안한다. 제안 기법은 비교적 정확한 예측모델로 알려져 있는 ARIMA 모델을 이용하였고 이상 징후 여부를 확률값으로 변화하여 확률 임계값에 따라 이상 징후를 탐지하도록 하여 그 성능을 극대화할 수 있도록 하였다. 이를 위해 제안 기법을 네트워크상에 발생시킨 웜과 같은 비정상 공격 트래픽을 포함한 전체 트래픽과 웹 트래픽에 적용하여 트래픽의 이상 징후를 신뢰성 있는 수준에서 탐지함을 보여주었다. 이 기법을 네트워크 기반의 침입탐지시스템에 적용할 강제 큰 효과 가져올 수 있을 것이다.