등가의 Wiener-Hopf 방정식을 이용한 LMS 알고리즘에 관한 연구

Research on the Least Mean Square Algorithm Based on Equivalent Wiener-Hopf Equation

  • 안봉만 (전북대학교 Next 사업단) ;
  • 황지원 (익산대학 컴퓨터과학과) ;
  • 조주필 (군산대학교 전자정보공학부)
  • 발행 : 2008.05.31

초록

본 논문은 등가의 Wiener-Hopf 방정식의 해를 LMS 알고리즘을 이용하여 구할 수 있는 방법과 격자필터에서 직접적으로 TDL 필터의 계수를 구할 수 있는 방법을 제안한다. 이를 위해 격자필터를 이용하여 생성한 직교입력 신호를 등가의 Wiener-Hopf 방정식에 적용하여 그 해를 최소평균자승 알고리즘을 이용하여 순환적으로 구하는 방법을 보인다. 이와 같은 경우 기존에는 오차와 regression 계수를 순환적으로 구할 수 있는데 반하여 본 논문에서는 오차와 TDL 필터의 계수를 순환적으로 구할 수 있는 장점이 있다. 또한 제안한 알고리즘의 수렴적 특성을 이론적으로 고찰하였다. 그 결과는 전통적 해석과 유사하게 나타남을 알 수 있었다. 성능 평가 결과를 통해 제안한 알고리즘이 매우 우수한 성능을 나타내고 있음을 확인하였다.

This paper presents the methods which obtain the solution of Wiener-Hopf equation by LMS algorithm and get the coefficient of TDL filter in lattice filter directly. For this result, we apply an orthogonal input signal generated by lattice filter into an equivalent Wiener-Hopf equation and shows the scheme that can obtain the solution by using the MMSE algorithm. Conventionally, the method like aforementioned scheme can get an error and regression coefficient recursively. However, in this paper, we can obtain an error and the coefficients of TDL filter recursively. And, we make an theoretical analysis on the convergence characteristics of the proposed algorithm. Then we can see that the result is similar to conventional analysis. Also, by computer simulation, we can make sure that the proposed algorithm has an excellent performance.

키워드

참고문헌

  1. Haykin, Adaptive Filter Theory-Fouth Edition, Prentice Hall, 2002, pp.94-193, Chapter11-Chapter 12
  2. J. G. Proakis, C. M. Rader, F. Ling and C. L. Nikias, Advanced Digital Signal Processing. Macmillan Publishing Company, 1992, Chapter 4-Chapter 5
  3. F. Albu, M. Bouchard and Y Zakharov, "Pseudo-Affine Projection Algorithms for Multichannel Active Noise Control," IEEE Transactions on Audio, Speech and Language Processing, Vol.15, Issue 3, pp.1044 - 1052, March 2007 https://doi.org/10.1109/TASL.2006.881677
  4. Song Liu, Xiaodong Li and Jing Tian, "Transform domain adaptive filter in active noise control,". Signal Processing, 2002 6th International Conference on Vol.1, pp.272-275 , 26-30 Aug. 2002
  5. W. B. Mikhael and A. S. Spanias,"A fast frequency- domain adaptive algorithm," Proceedings of the IEEE, Vol.76, Issue 1, pp.80-82, Jan. 1988
  6. A. C. P. Veiga, Y. Iano and G. A. Carrijo, "A new adaptive filter structure: comparative study of NLMS, DST-LMS and DCT-LMS schemes applied to electromyographic signal modelling," PACRIM. 2001 IEEE Pacific Rim Conference on Communications, Computers and signal Processing, Vol.2, 26-28, pp.555-558, Aug., 2001
  7. J. Burg, "Maximum entropy spectral analysis," presented at the 37th Meet. Soc. Expior. Geophysicsts, Oklahoma City, OK, 1967
  8. L. J. Griffiths, "A continuously-adaptive filter implemented as a lattice structure", in proc. 1977 IEEE Int. Conf. Acoust., Speech Signal Processing, Vol.77CH1197-3, pp.683-686
  9. D. Pack and E. H. Satorious, "Least Squares, Adaptive Lattice Algorithms", Naval Ocean Syst. Cent., San Diago, CA, Tech. Rep. 423 Apr. 1979
  10. L. J. Griffiths, "An Adaptive Lattice Structure for Noise Cancelling Applications", in proc. 1977 IEEE Int. Conf. Acoust., Speech Signal Processing, Vol.78, pp.87-90, Tulsa, Okla., April, 1978
  11. E. H. Satorius and J. D. Pack, "Application of Least-Squares Lattice Algorithms to Adaptive Equalization," IEEE Trans., Communications, Vol.COM-29, pp.136-142, Feb., 1981
  12. J. Makhoul. "A Class of ALL-Zero Lattice Digital Filters: Properties and Applications," IEEE Trans. Acoustics, Speech, and Signal Processing, Vol.ASSP-26, pp.304-314, Aug. 1978
  13. P. S. R. Diniz, Adaptive Filtering, Algorithms and practical Implementation, Second Edition, Kluwer Academic Publishers Group, 2002. pp.16-193
  14. L. Fuyun and J. Proakis, "A generalized multichannel least squares lattice algorithm based on sequential processing stages," IEEE Trans .on Signal Processing, Vol.32, pp.381-389, Apr. 1984 https://doi.org/10.1109/TASSP.1984.1164325
  15. M. H. Hayes, Statistical Digital Signal Processing and Modeling, John Wiley & Sons, Inc.,1996. pp.215-277