System-Level Simulation for Efficient Displacement of Base Station Antennas for CDMA Uplink System in Urban Microcells

도심 마이크로셀에서 CDMA 시스템을 위한 효율적인 기지국 배치를 위한 모의실험

  • 민승욱 (상명대학교 컴퓨터과학부)
  • Published : 2008.05.31

Abstract

In this paper, we cary out system level simulations to investigate the effect of cell shape(i.e., different base station displacements in the two directions defined by the street grid) on minimizing transmitter power, interference power, and blocking probability for CDMA system in urban microcellular environments. In urban microcell, path loss to the base station depends on the orientation of the street where the mobile is located. Interference from mobile stations to the base station in the reference cell is considered up to second tier. The wrap around method is used to include the second tier interference with realistic computational complexity without reducing the accuracy of interference calculations. The investigation shows that the transmitter power, interference power, and blocking probability in a cell can be reduced by proper selection of the efficient cell shape.

본 논문은 균일한 도심지역에서의 CDMA 시스템의 상향링크에 대하여 송신전력, 간섭전력 및 블로킹 확률 등을 최소화하는데 기지국 배치에 따라 결정되는 셀 모양의 효과를 분석하기 위하여 시스템 수준의 모의실험이 이루어진다. 도심 마이크로 셀에서 기지국에 대한 경로 손실은 단말이 위치한 거리의 방향성에 영향을 받는다. 단말로부터 기준 기지국에 대한 간섭은 2차 Tier까지 고려된다. 간섭 계산의 정확성에 대한 손실 없이 계산 복잡도를 줄이기 위한 방법으로Wrap around method가 사용된다. 모의실험 결과는 송신전력, 간섭전력 및 블로킹 확률 등이 효율적인 기지국 배치에 따른 셀의 모양에 따라 줄어들 수 있음을 보여준다.

Keywords

References

  1. Andrea J. Goldsmith, Larry J. Greenstein, 'Measurement-based model for predicting coverage areas of urban microcells,' IEEE JSAC, Vol.11, No.7, pp.1013-1023, Dec. 1993
  2. Martin V. Clark, Vinko Erceg, Larry J. Greenstein, 'Reuse effciency in urban microcellular networks,' IEEE Trans. on Vehicular Technology, Vol.46, No.2, pp.279-288, May. 1997 https://doi.org/10.1109/25.580766
  3. F. Niu and H. L. Bertoni, 'Path loss and cell Coverage of urban microcells in high-rise building environments,' IEEE Globecom'93, Houston, TX, pp.266-270 1993
  4. L.R. Maciel and H. L. Bertoni, 'Cell shape for microcellular systems in residential and commercial environments,' IEEE Trans. Veh. Tech., pp.270-278, 1994
  5. K. S. Gilhousen et al., 'On the Capacity of a Cellular CDMA Systems,' IEEE Trans. Veh. Technol., Vol.40, No.2, pp.303-312, May 1991 https://doi.org/10.1109/25.289411
  6. A. J. Viterbi, CDMA Principles of Spread Spectrum Communication. Reading, MA: Addison-Wesley, 1995
  7. R. Padovani, 'Reverse link performance of IS-95 based cellular systems,' IEEE Personal Commun., Vol.1, No.3, pp.28-34, 1994 https://doi.org/10.1109/MPC.1994.311829
  8. A. J. Viterbi, A. M. Viterbi, K. S. Gilhousen, and E. Zehavi, 'Soft handoff extends CDMA cell coverage and increases reverse link capacity,' IEEE J. Select. Areas Commun., Vol.12, pp.1281-1288, Oct. 1994 https://doi.org/10.1109/49.329346
  9. Y. Ishikawa and N. Umeda, 'Capacity design and performance of call admission control in cellular CDMA systems,' IEEE J. Select. Areas Commun., Vol.15, pp.1627-1635, Oct. 1997 https://doi.org/10.1109/49.634800
  10. S. Shin, C. Cho, and D. Sung, 'Interference-based channel assignment for DS-CDMA cellular systems,' IEEE Trans. Veh. Technol., Vol.48, pp.233-239, Jan. 1999 https://doi.org/10.1109/25.740098
  11. J. S. Evans and D. Everitt, 'On the teletraffic capacity of CDMA cellular networks,' IEEE Trans. Veh. Technol., Vol.48, pp.153-165, Jan. 1999 https://doi.org/10.1109/25.740079
  12. R.G. Akl, M.V. Hegde, M. Naraghi-Pour, and P.S. Min, 'Multicell CDMA network design,' IEEE Trans. Veh. Technol., Vol.50, pp.711-722, May 2001 https://doi.org/10.1109/25.933307
  13. S. Min, H.M. El-Sallabi, and H.L. Bertoni, 'Effect of cell shape on design of CDMA systems for urban microcells,' IEEE Trans. on Wireless Communications, Vol.5, No.10, pp.2805-2813, Oct. 2006 https://doi.org/10.1109/TWC.2006.04427
  14. H.-S. Cho; M.Y. Chung, S.H. Kang, and D.K. Sung; 'Performance analysis of cross- and cigar- shaped urban microcells considering user mobility characteristics,' IEEE Trans. Veh. Technol., Vol.49, No.1, pp.105-116, Jan 2000 https://doi.org/10.1109/25.820703
  15. C.S. Kang, H.-S. Cho, and D.K. Sung, 'Capacity analysis of spectrally overlaid macro/microcellular CDMA systems supporting multiple types of traffic,' IEEE Trans. Veh. Technol., Vol.52, No.2, pp.333-345, March 2003 https://doi.org/10.1109/TVT.2002.807128
  16. B.T. Ahmed, M.C. Ramon, and LH. Ariet, 'Capacity and interference statistics of Highways W-CDMA Cigar-shaped microcells (Uplink analysis),' IEEE Comm. Letters, Vol.6, No.5, pp.172-174, May 2002 https://doi.org/10.1109/4234.1001654
  17. D.H. Kim, D.D. Lee, H.J. Kim, and K.C. Whang, 'Capacity analysis of macro/microcellular CDMA with power ratio control and tilted antenna' IEEE Trans. Veh. Technol., Vol.49, No.1, pp.34-42, Jan. 2000 https://doi.org/10.1109/25.820696
  18. D. M. Grieco, 'The capacity achievable with a broadband CDMA microcell underlay to an existing cellular macrosystem,' IEEE J. Select. Areas Commun., Vol.12, pp.744-750, May 1994 https://doi.org/10.1109/49.286681
  19. J. Shapira, 'Microcell engineering in CDMA cellular networks,' IEEE Trans. Veh. Technol., Vol.43, pp.817-825, Nov. 1994 https://doi.org/10.1109/25.330140
  20. T. Suzuki, K. Takeo, M. Nishino, and Y. Amezawa, 'Microcell quality control scheme for PCS CDMA systems considering nonuniform traffic distribution,' in Proc. IEEE Int. Conf. Universal Personal Communications, 1993, pp.239-243
  21. J. Zander, 'Distributed co-channel interference control in cellular radio system,' IEEE Trans. on Veh. Tech., Vol.41, No.3, 1992