Spore Inoculum Optimization to Maximize Cyclosporin A Production in Tolypocladium niveum

  • Lee, Mi-Jin (Department of Biological Engineering, Inha University) ;
  • Lee, Han-Na (Department of Biological Engineering, Inha University) ;
  • Han, Kyu-Boem (Hanson Biotech Co., Ltd.) ;
  • Kim, Eung-Soo (Department of Biological Engineering, Inha University)
  • Published : 2008.05.31

Abstract

The cyclic undecapeptide, cyclosporin A (CyA), is one of the most commonly prescribed immunosuppressive drugs. It is generated nonribosomally from a multifunctional cyclosporin synthetase enzyme complex by the filamentous fungus Tolypocladium niveum. In order to maximize the production of CyA by wild-type T. niveum (ATCC 34921), each of three culture stages (sporulation culture, growth culture, and production culture) were sequentially optimized. Among the three potential sporulation media, the SSMA medium generated the highest numbers of T. niveum spores. The SSM and SM media were then selected as the optimal growth and production culture media, respectively. The addition of valine and fructose to the SM production medium was also determined to be crucial for CyA biosynthesis. In this optimized three-stage culture system, 3% of the spore inoculum generated the highest level of CyA productivity in a 15-day T. niveum production culture, thereby implying that the determination of an appropriate size of T. niveum spore inoculum plays a critical role in the maximization of CyA production.

Keywords

References

  1. Balaraman, K. and N. Mathew. 2006. Optimization of media composition for the production of cyclosporin A by Tolypocladium species. Indian J. Med. Res. 123: 525-530
  2. Borel, J. F. 1983. Cyclosporin: Historical perspectives. Transplant. Proc. 15: 2219
  3. Borel, J. F. 1986. Cyclosporin and its future, pp. 9-18. In Borel, J. F. (ed.), Cyclosporin, Progress in Allergy, Vol. 38. Karger, Basel, Switzerland
  4. Chahal, P. S. 1992. Fluorosensor controlled fed-batch production of cyclosporin-A from Beaveria nivea. PhD Thesis. Faculty of Graduate studies, The University of Western Ontario, London, Ontario
  5. Chun, G.-T. and S. N. Agathos. 1991. Comparative studies of physiological and environmental effects on the production of cyclosporine A in suspended and immobilized cells of Tolypocladium inflatum. Biotechnol. Bioeng. 37: 256-265 https://doi.org/10.1002/bit.260370308
  6. Chun, G.-T. and S. N. Agathos. 2001. Application of oxygen uptake rate measured by a dynamic method for analysis of related fermentation parameters in cyclosporin A fermentation; suspended and immobilized cell cultures. J. Microbiol. Biotechnol. 11: 1055-1060
  7. Deo, Y. M. and G. M. Gaucher. 1984. Semicontinuous and continuous production of penicillin G by Penicillium chrysogenum cells immobilized in $\kappa$-carrageenan beads. Biotechnol. Bioeng. 26: 285-295 https://doi.org/10.1002/bit.260260314
  8. Elander, R. P. 1989. Bioprocess technology in industrial fungi, pp. 169-220. In J. O. Neway (ed.), Fermentation Process Development of Industrial Organisins. Marcel Dekker, New York
  9. Gonzalez, M. H. L., S. L. Resnik, and G. Vaamonde. 1987. Influence of inoculum size on growth rate and lag phase of fungi isolated from Argentine corn. Int. J. Food Microbiol. 4: 111-117 https://doi.org/10.1016/0168-1605(87)90017-1
  10. Kim, D. W., S. G. Kang, I. S. Kim, B. K. Lee, Y. T. Rho, and K. J. Lee. 2006. Proteases and protease inhibitors produced in streptomycetes and their roles in morphological differentiation. J. Microbiol. Biotechnol. 16: 5-14
  11. Kim, H. H., J. G. Na, Y. K. Chang, G. T. Chun, S. J. Lee, and Y. H. Jeong. 2004. Optimization of submerged culture conditions for mycelial growth and exopolysaccharides production by Agaricus blazei. J. Microbiol. Biotechnol. 14: 944-951
  12. Kim, H. M., S. W. Kim, H. J. Hwang, M. K. Park, Y. A.-G. Mahmoud, J. W. Choi, and J. W. Yun. 2006. Influence of agitation intensity and aeration rate on production of antioxidative exopolysaccharides from submerged mycelial culture of Ganoderma resinaceum. J. Microbiol. Biotechnol. 16: 1240-1247
  13. Kobel, H. and R. Traber. 1982. Directed biosynthesis of cyclosporins. Eur. J. Appl. Microbiol. Biotechnol. 14: 237-240 https://doi.org/10.1007/BF00498470
  14. Lee, J. 1989. Ph. D. Thesis, Department of Chemical and Biochemical Engineering, Rutgers University, New Brunswick
  15. Lee, J. and N. S. Agathos. 1989. Effect of amino acids on the production of cyclosporin A by Tolypocladium inflatum. Biotechnol. Lett. 11: 77-82 https://doi.org/10.1007/BF01192178
  16. Lee, Y., C. Park, B. Lee, E. Han, T. Kim, J. Lee, and S. Kim. 2006. Effect of nutrients on the production of extracellular enzymes for decolorization of reactive blue 19 and reactive black 5. J. Microbiol. Biotechnol. 16: 226-231
  17. Manfredini, R., V. Cavallera, L. Marina, and G. Donati. 1983. Mixing and oxygen transfer in conventional stirred fermentors. Biotechnol. Bioeng. 25: 3115-3131 https://doi.org/10.1002/bit.260251224
  18. Margaritis, A. and P. S. Chahal. 1989. Development of a fructose based medium for biosynthesis of cyclosporin-A by Beauveria nivea. Biotechnol. Lett. 11: 765-768 https://doi.org/10.1007/BF01026093
  19. Martin, J. F., T. D. Ingolia, and S. W. Queener. 1990. Molecular genetics of Penicillin and cephalosporin antibiotic biosynthesis, pp. 149-196. In S. A. Leong and R. M. Berka (eds.), Molecular Industrial Mycology, Systems and Applications for Filamentous Fungi. Marcel Dekker, New York
  20. Park, N.-S., H.-J. Park, K. Han, and E.-S. Kim. 2006. Heterologous expression of novel cytochrome P450 hydroxylase genes from Sebekia benihana. J. Microbiol. Biotechnol. 16: 295-298
  21. Park, N.-S., J.-S. Myeong, H.-J. Park, K. Han, S. N. Kim, and E.-S. Kim. 2005. Characterization and culture optimization of regiospecific cyclosporin hydroxylation in rare actinomycetes species. J. Microbiol. Biotechnol. 15: 188-191
  22. Sinha, J., J. T. Bae, J. P. Park, K. M. Kim, C. H. Song, and J. W. Yun. 2001. Changes in morphology of Paecilomyces japonica and their effect on broth rheology during production of exo-biopolymers. Appl. Microbiol. Biotechnol. 56: 88-92 https://doi.org/10.1007/s002530100606
  23. William, R. S. 1997. In: Biotechnology of Antibiotics, 2nd Ed., pp. 779-805. Marcel Dekker, New York
  24. Yang, F. C. and C. B. Liau. 1998. Effects of cultivating conditions on the mycelial growth of Ganoderma lucidum in submerged flask cultures. Bioprocess Eng. 19: 233-236
  25. Yun, M.-J. 1995. M. S. Thesis, Department of Microbiology, Kangwon National University, Chunchoen, Korea
  26. Zhang, C.-H., J.-Y. Wu, and G.-Y. He. 2002. Effects of inoculum size and age on biomass growth and paclitaxel production of elicitor-treated Taxus yunnanensis cell cultures. Appl. Microbiol. Biotechnol. 60: 396-402 https://doi.org/10.1007/s00253-002-1130-5