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A suitable simple model tested by experiments is required
to address complex biological reactions like esterase
synthesis by Saccharomyces cerevisiae. Such an approach
might be the answer to a proper bioprocessing strategy. In
this regard, a logistic model for esterase production from
Saccharomyces cerevisiae has been developed, which
predicts well the cell mass, the carbon source (glucose)
consumption, and the esterase activity. The accuracy of
the model has been statistically examined by using the
Student’s #-test. The parameter sensitivity analysis showed
that all five parameters (1, K, X,, Y,,, and Y ) have
significant influence on the predicted values of esterase
activity.
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Esterase splits esters into an acid and an alcohol in a
chemical reaction with water during hydrolysis. Wide
ranges of different esterases exist that differ in substrate
specificity, protein structure, and biological function [13,
18, 20]. Esterase is an important biocatalyst for the industrial
production of chiral intermediates. In general, esterases are
easy to handle. The enzymes are quite stable, which is
important for industrial processes. Enzymes, particularly
esterases and lipases, are recognized as functional catalysts
for asymmetric synthesis, and in several situations, their
stereochemical control cannot be equaled by nonenzymatic
catalysis [26]. Additionally, esterase is characterized by a
large range of substrate selectivity combined with high
stereoselectivity. In contrast to lipases, esterases are more
specific to short-chain fatty acids and are used in aqueous
or two-phase systems. Esterases are also used for the
optical resolution of racemic mixtures. There are a few
esterases that also hydrolyze tertiary alcohols. These
enzymes have also been used to separate endo-/exo-
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mixtures and for the regioselective hydrolysis of an ester
group in the presence of a second ester function. Specific
types of esterases are found useful in the paper and pulp
beer manufacturing, perfumes, and pharmaceuticals industries.
Specifically, esterases from Saccharomyces cerevisiae are
involved in the development of flavor for food and
alcoholic beverages like sake, beer, and wine. The main
advantages of microbial esterases are high selectivity
and activity, animal-free material, broad applicability, and
excellent catalytic performance {9, 12, 23].

In order to produce a large quantity of esterases, one needs
to propose a suitable process strategy based on a quantitative
concept. In this context, a suitable and reliable kinetic model
is necessary. The reason to develop an unstructured model for
esterase production is its simplicity. This kinetic model is a
useful tool for the study and control of industrial microbial
processes. Kinetic studies based on unstructured models
for products from various microorganisms are available in
earlier works [3, 4, 8, 10, 11, 21, 24, 29]. The literature shows
that the equations of the unstructured model differ with the
product synthesized and also the microorganism used. This
implies that the same set of model equations that is applied
to a particular product synthesis may not be able to
describe the phenomenon of interest for other products. As
they specifically represent the particular system, they cannot
address the kinetics of esterase production. Hence, the aim
of this present work is to develop an unstructured model
for esterase production by Saccharomyces cerevisiae.
Unstructured kinetic models are the simplest ones for
modeling microbial systems. This modeling strategy describes
the microorganisms as an abstract sense, called biomass.
Biomass is considered to be a component or reactant in the
system. Unstructured kinetic models are the most frequently
employed for modeling microbial systems because of their
simplicity and are good enough for technical purposes
[7, 27]. Because unstructured models are simpler than the
structured models, they require the measurement of a smaller
number of components and yet are able to describe the
evolution of biomass, substrate consumption, and production
formation [1,2]. Mathematical models of fermentation
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kinetics facilitate data analysis and may provide a strategy
for solving problems encountered in industrial fermentation
processes [15, 25, 30].

MATERIALS AND METHODS

Microorganism

Saccharomyces cerevisiae MTCC 36 was obtained from the Microbial
Type Culture Collection, Institute of Microbial Technology, Chandigarh,
India. The organism was maintained on yeast extract-peptone-
dextrose-malt extract-agar slants containing (g/l): yeast extract, 3;
peptone, 5; dextrose, 10; malt extract, 3; agar, 20. Slants were
incubated at 30°C for 48 h for proper growth. The composition of
production media for esterase production was optimized using
central composite design (g/l): yeast extract, 2.926; peptone, 7.109;
dextrose, 13.765; malt extract, 3.028 [19].

Experimental Method

The 150 ml of medium was placed in a 500-ml Erlenmeyer flask.
After sterilization of the medium, approximately 1x10° cells were
inoculated into the medium. The culture was incubated on a rotary
shaker maintained at 180 rpm at 30°C. Samples were collected at
regular intervals and were analyzed for glucose, enzyme, and cell
mass. Glucose was estimated by the dinitrosalicyclic acid method
[17]. Cell mass was measured by the method suggested by Panda
and Gowrishankar [19]. An aliquot of 1 ml of sample from
fermentation broth was centrifuged at 4,000 rpm for 10 min. After
centrifugation, the supernatant was decanted and again centrifuged
with water for washing the cells. Cells were then transferred to a
preweighted aluminum foil and kept in a drier at 60°C for 12 h or to
a time until constant weight was reached. After drying, the weight
of the aluminum foil with cells was measured. The amount of cell
mass was calculated from the difference between the weight of foil
with cells to the weight of the empty foil.

Enzyme Assay

Esterase was assayed by using p-nitrophenylacetate as the substrate.
A reaction mixture containing 0.5 ml of enzyme solution, 1 ml of
0.15 M sodium phosphate buffer (pH 7.0), 2.5 ml of double-distitled
water, and 1 ml of 1 mM substrate solution was incubated at 30°C
for 30 min. A standard plot of p-nitrophenol vs. absorbance at
400 nm was used to find the concentration of liberated p-nitrophenol
in the reaction mixture [28]. The enzyme activity was expressed in
terms of Unit (U). One unit of esterase activity is defined as the
amount of enzyme producing 1 pumole of the p-nitrophenol per
minute under the standard assay conditions. Specific esterase
activity 1s defined as the unit of esterase activity (U) per gram of
dry cell mass equivalent (i.e., U/g dry cell mass).

Theory

The mathematical model consists of a set of ordinary differential
equations taking into account the microbial growth, the substrate
consumption, and the product formation with time. In the logistic
model, the rate of cell mass increase may be limited by cell density
[S]. Parameter X, is the upper limit of cell growth and it is called
carrying capacity. If cell mass exceeds X, the cell growth rate
becomes negative and cell numbers decline. The model is based on
several assumptions. The specific growth rate depends on substrate

concentration. Autoinhibition is assumed to occur within the cell
itself. Substrate consumption is not related to the product formation
(i.e., intracellular enzyme) and the product formation rate can be
associated with the growth of cells. The rates are given below:

dX_ pnS X 1
dt KS+SX[1 Xm} M)
dt Yx/s dt '

dP_y  dX 3
dt Yox dt ®)

The expression (1-X/X)) is employed in cell growth rate to describe
the autoinhibition of the cell itself [31]. The parameters needed to be
evaluated from the model using experimental data are the maximum
specific growth rate (1), Monod’s constant (K,), maximum cell mass
(X,,), the yield coefficient of cell with respect to substrate (Y,,), and the
yield coefficient of product with respect to cell (Y ).

The model is supplemented with the data of three independent
runs. The ordinary differential Eqgs. (1)—(3) are solved simultaneously
by using the fourth-order Runge-Kutta method, coupled with the
optimization procedure called simulated annealing. The initial conditions
for solving the ordinary differential equations are X,=0.1 g/l, P;=0,
and substrate concentration differs for various concentrations of
glucose. The algorithm for parameter estimation procedure is given
in Appendix 1. The objective function is to minimize the sum of the
errors between experimental data and estimated values at all times.
The parameters varied one at a time randomly to get a new set of
parameters for the algorithm. With each set of parameters, the
objective function is determined and the difference in the objective
function (Af) with old and new sets of parameters is calculated. If
the new set of values improves the objective function, the move is
accepted. Otherwise, the move is accepted with a probability of
exp(—Af/T), where T is simulated annealing temperature, a dummy
variable that is used to control the acceptance of uphill moves.
Initially, T is fixed at a higher value and is periodically annealed by
proportional cooling schedule in the outer loop. At any specific
temperature, the parameters are randomly varied number of times in
the inner loop. Thus, the optimum parameter values are obtained
after T reaches a desired lower value [14]. The algorithm for
simulated annealing procedure is given in Appendix II.

Parameter Sensitivity Analysis

The aim of the sensitivity analysis is to estimate a rate of change in
the output of the model with respect to changes in model input. This
is important for evaluating the applicability of the model, determining
parameters, which is important to have more accurate results, and
understanding the behavior of the system being modeled. The
normalized sensitivity coefficients represent a percentage change in
the predicted values due to a percentage change in the parameter
values [22].

RESULTS AND DISCUSSION

Discussion on Experimental Results
To develop a suitable model, it is necessary that the model
should be tested with experimental results. In this regard,
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Fig. 1. pH of the medium versus time for different glucose
concentrations during fermentation.

For initial glucose concentration: (a) 4 g/l; (M) 8 g/l; (@) 13.5g/l; (»)
20 g/l; (1) 22 g/1; (O) 25 g/l.

basic data of cell mass, product concentration, and reactant
concentration must be available under a variety of conditions.
Current work focused on the fundamental requirement of
experimental data for a complex biological reaction. As
the fermentation progressed, the pH of the medium
decreased exponentially up to 10h and then remained
constant (Fig. 1). The decrease of pH with time may be
due to the degradation of glucose yielding acid products in
the broth. In this work, the pH of the medium for esterase
production was uncontrolled (pH was 6.5). The optimum
pH reported for esterase production from S. cerevisiae is
6.2 [19]. It may be inferred from Fig. 2 that the glucose

S (g/l)

Time (h)

Fig. 2. Glucose concentration versus time for different initial
concentrations.

For initial glucose concentration: (A) 4 ¢/I; (W) 8 g/1; (@) 13.5 g/1; (&)
20 g/l; () 22 g/t; (O) 25 /.
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consumption with time is analogous to the pH profile. As
the glucose concentration decreased with time, the pH of
the production medium also decreased with time. For 4 g/l
of glucose, some residual glucose was present, whereas for
higher concentrations of glucose, the residual glucose in the
bulk medium was approximately zero at 20 h of fermentation.
On the other hand, microorganism took the same time to
attain a plateau irrespective of the glucose concentration.
For various glucose concentrations, the lag phase was
almost the same (i.e., 2 h), and the stationary phase started
approximately at 20 h. Between 2 and 20 h, cells grew
exponentially and the amount of cell produced depended
on the initial glucose concentration. For low substrate
concentration, the amount of dried cell mass per liter of
fermentation broth was low and it increased for higher
glucose concentrations up to 13.5 g/l. Above 13.5 g/l of
glucose, there was no difference in cell mass. The cell
growth profiles for 13.5 g/, 20 g/l, 22 g/l, and 25 g/l of
glucose concentrations appeared to be the same between 15
and 20 h. Therefore, the addition of more glucose beyond
13.5 g/l does not influence the cell growth. The maximum
dry cell mass obtained at 13.5 g/l is approximately 8.5 g/l
(Fig. 3). The products of the fermentation process are
proteins. The protein extract obtained after cell lyses,
contains more number of proteins. The activity of esterase
was measured for different glucose concentrations (Fig. 4).
Since esterase is an intracellular protein, the esterase activity
profile is similar to the cell mass profile. Even though the
amount of dry cell mass for 13.5 g/l and 20 g/l was the
same, the esterase activity was high for 20 g/l compared
with 13.5 g/l of glucose concentration. The excess glucose
present in 20 g/l may be consumed for the synthesis of
enzymes rather than the multiplication of cells. Esterase
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Fig. 3. Cell mass versus time for different glucose concentrations.

For initial glucose concentration: (A ) 4 g/l; (M) & g/l; (@) 13.5 g/l; (~)
20 ¢/1; ()22 g/1; (O) 25 g/l. .
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Fig. 4. Esterase activity versus time for different glucose
concentrations.

For initial glucose concentration: (A) 4 g/l; (M) 8 g/l; (@) 13.5g/l; (2)
20 g/l; () 22 g/l; (O) 25 g/l.

activity increased with the increase in initial glucose
concentration in the fermentation medium.

. Discussion on Theoretical Results

Usually, the cell growth rate is expressed in terms of
Monod’s equation. In this work, a logistic model has been
used to predict the cell growth rate more accurately than
the Monod’s equation. Fig. 5 shows the difference between
the logistic model and Monod’s equation for cell mass,
glucose concentration, and esterase activity. This shows
that the logistic model, having an autoinhibition term in the
expression, fits with experimental data very well compared
with the Monod’s equation. As the intracellular enzymes are
associated only with the cells, the substrate consumption is
related to the growth of the cells alone. The expression
of product formation assumes that the rate of product
formation is associated with the cell growth [6]. The
experimental data for esterase activity is not able to fit well
with the Luedeking-Piret equation because the Luedeking-
Piret expression contains both growth-associated and
nongrowth-associated terms.

The comparison of experimental data with model curves
for cell growth, glucose consumption, and esterase activity
at different glucose concentrations are given in Figs. 6-8.
The differential Egs. (1)—(3) are simultaneously solved
using the Runge-Kutta method in the MATLLAB environment,
as discussed in Appendix I. The errors of data for cell
growth, glucose consumption, and esterase activity have
been calculated individually, plus the total error, which is
the sum of all the three individual errors, is minimized by
generating new parameter values by the simulated annealing
procedure (cf. Appendix II).

Fig. 6 shows that Eq. (1) is able to predict well the
cell mass data. The correlation coefficients between the
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Fig. 5. Comparison between the Monod's equation and the
logistic model for 4 g/l of initial glucose concentration: A cell
mass; B glucose concentration; C esterase activity.

(M) Experimental data, (—-) logistic model, (----) Monod equation.

experimental data and model curves are given in Table 1.
The correlation coefficient value implies that the predicted
data fits well with the experimental data. Figs. 6-—8
show that at low concentrations of glucose in fermentation,
the prediction is better compared with the high glucose
concentration in the medium. The accuracy of the model
was tested using the Student’s #-test. There was no
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Fig. 6. Comparison of experimental data with model curves for
cell mass obtained for different glucose concentrations.

For initial glucose concentration: 4 g/] - ( A ) experimental, (—) predicted;
8 g/l - (M) experimental, (- - -) predicted; 13.5 g/ - (@) experimental, (----)
predicted; 20 g/l - (A ) experimental, (-+++) predicted.

significant difference observed between the experimental
and the estimated data.

The optimum values of the parameters are given in
Table 2 for different initial glucose concentrations in the
fermentation. It was observed that yield coefficient Y,
decreased with increasing initial glucose concentration.
The maximum amount of dry cell mass (X)) obtained from
the model was approximately the same as that obtained
from the experimental data. The main advantage of this
logistic model is to predict the maximum amount of dry
cell mass at a known initial glucose concentration [16].

Parameter sensitivity analysis has been done by changing
the parameter value by 10% of the optimal value. This
analysis has been studied by changing only one parameter
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Fig. 7. Comparison of experimental data with model curves for
different glucose concentrations.

For initial glucose concentration: 4 g/ - ( A ) experimental, (—) predicted;
8 g/l - (M) experimental, (- - -) predicted; 13.5 g/l - (@) experimental, (-----)
predicted; 20 g/l - (&) experimental, () predicted.
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Fig. 8. Comparison of experimental data with model curves for
esterase activity obtained for different glucose concentrations.
For initial glucose concentration: 4 g/l - ( A ) experimental, (—) predicted;
8 g/ - (M) experimental, (- - -) predicted; 13.5 g/ - (@) experimental, (-----)
predicted; 20 g/l - (&) experimental, (--++) predicted.

at a time, keeping other parameters at the optimum value.
The variation of sensitivity coefficient with time for the
prediction of cell mass, glucose consumption, and esterase
activity is given in Fig. 9. It is known that the parameters
(M K X Yy and Y ) are constants for a particular
organism and also for the particular conditions. The goal of
this sensitivity analysis study is to highlight the importance
of the optimum value of the parameter and to analyze the
deviation in prediction by changing the parameter values.

Table 1. Correlation coefficient between the predicted and
experimental data for various glucose concentrations.

Glucose Correlation coeflicient for varying X, S, and P
concentration (g/1) For X For S For P

4 0.9932 0.9913 0.9883

8 0.9899 0.9607 0.9807
13.5 0.9865 0.9867 0.9878
20 0.9503 0.9836 0.9227
22 0.9545 0.9597 0.9265
25 0.9521 0.9658 0.9234

Table 2. Optimum values of parameters for various glucose

concentrations.
corf:létlllct(r);fion Hm K, K Y™ Yon*

(/) (I/h) (g e (gg (Ulg)

4 0.3217 0.1145 3.5980 0.9116 0.0930

8 0.3924 1.0991 6.5058 0.7778 0.0638
13.5 0.4124 1.1876 &.5650 0.6558 0.0532
20 0.4755 1.2655 R8.4624 04310 0.0725
22 0.4732 1.2749 8.5130 0.3419 0.0733
25 0.4779 1.2905 8.5090 0.3102 0.0714

*Evaluated at X,,,.
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The change in maximum specific growth rate value greatly
influences the predicted values of all variables. The predicted
value of maximum specific growth rate deviated by more
than 20% from the original value for cell mass and esterase
activity. K, and X, did not influence much on any variables.
Y, showed similar behavior as did maximum specific growth
rate. The variation in Y, can only change the esterase
activity profile. The study of parameter analysis shows
that the predicted values of esterase activity were affected by
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Fig. 9. Sensitivity coeflicients versus time for the five parameters:
(A) varnation with cell mass; (B) variation with glucose
consumption; (C) variation with esterase activity.

(M) s (O) K5 (4) Xis (2) Yos () Yo

changing any of the parameter values. Y, had no influence on
substrate consumption. The prediction of cell concentration
values was also not affected by the change in Y .

The logistic model was able to predict the esterase activity
displayed by Saccharomyces cerevisiae. It was found that
20 g/l of glucose concentration produced the maximum
esterase activity. Parameter sensitivity analysis showed
that even a 10% change in the optimum values has more
influence in changing the predicted values. Although the
logistic model could estimate the output approximately
similar to the experimental data, it is inefficient in
describing the mechanism of producing the esterases.
More detail about the kinetics of esterase production can
be obtained by considering the metabolic pathway using a
structured model.

NOMENCLATURE

K, - Monod’s constant (g/1)

P - Esterase activity (U)

S - Substrate (or) glucose concentration (g/1)
t - Time (h)

X - Cell concentration (g/1)

X, -Maximum cell concentration (g/l)

Y, - Yield coethicient (U-l/g)

Y., - Yield coefficient (g/g)

U, - Maximum specific growth rate (1/h)

Af - Objective function
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APPENDIX 1

Parameter Estimation Method
Ordinary differential equations are solved by using Runge-
Kutta method. The syntax used is as follows,

[t , c]=ode45(F, [0, tf], cO)

where, tO=initial time
tf=final time
c0=vector consists of the initial values of cell
concentration, glucose concentration and enzyme
activity

Initial concentration considered for solving the model
equation are 0.1 g/l and zero for cell mass and esterase
activity respectively. The initial concentration for glucose
differs for different set of experiments.

Following are the steps involved in solving the differential

equations:

» Input the initial guess of parameter values.

* Input the initial conditions of X, Sy, P,.

* Subprogram containing the ordinary diflerential equations
is executed by using the above syntax of Runge-Kutta
method.

« Output values obtained are X, S and P with respect to
fime.
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APPENDIX [1

Simulated Annealing Algorithm:

* Step 1: The values of x and T,, are initialized.

« Step 2: An element of x is choosen randomly and
changed it randomly to a new value (i.e., randomly
generate x™" in the vicinity of x*).

» Step 3: Objective function is calculated as, Af=f(x"")-
f(x"?). If Af<O (ie., if the objective function is
improved), then the new vector x™" is accepted.
Otherwise, it is accepted with the probability exp(-Af/

Tsa) *

* Step 4: Repeated use of steps 2 and 3, for many times
will reduce T, periodically. The annealing schedule
involves reducing the annealing temperature according
to the following equation,

(nt1)__ (n)
Tsan _éTsa !

where & is a constant somewhat less than unity and n
represents the nth annealing temperature.

as T,,~>o0, the probability of any move approaches 1

as T,—0, the probability of accepting uphill moves
approaches 0.



