Identification and Characterization of a New Strain of the Unicellular Green Alga Dunaliella salina (Teod.) from Korea

  • Polle, Jurgen E.W. (Department of Biology, Brooklyn College of CUNY) ;
  • Struwe, Lena (Department of Ecology, Evolution, and Natural Resources, Rutgers University - Cook College) ;
  • Jin, Eon-Seon (Department of Life Science, Hanyang University)
  • Published : 2008.05.31

Abstract

The unicellular green alga Dunaliella salina is a halotolerant eukaryotic organism. Its halophytic properties provide an important advantage for open pond mass cultivation, since D. salina can be grown selectively. D. salina was originally described by E. C. Teodoresco in 1905. Since that time, numerous isolates of D. salina have been identified from hypersaline environments on different continents. The new Dunaliella strain used for this study was isolated from the salt farm area of the west coastal side of South Korea. Cells of the new strain were approximately oval- or pear-shaped (approximately $16-24\;{\mu}m$ long and $10-15\;{\mu}m$ wide), and contained one pyrenoid, cytoplasmatic granules, and no visible eyespot. Although levels of $\beta$-carotene per cell were relatively low in cells grown at salinities between 0.5 to 2.5 M NaCl, cells grown at 4.5 M NaCl contained about a ten-fold increase in cellular levels of $\beta$-carotene, which demonstrated that cells of the new Korean strain of Dunaliella can overaccumulate $\beta$-carotene in response to salt stress. Analysis of the ITS1 and ITS2 regions of the new Korean isolate showed that it is in the same clade as D. salina. Consequently, based on comparative cell morphology, biochemistry, and molecular phylogeny, the new Dunaliella isolate from South Korea was classified as D. salina KCTC10654BP.

Keywords

References

  1. Alvarez, I. and J. F. Wendel. 2003. Ribosomal ITS sequences and plant phylogenetic inference. Mol. Phylogen. Evol. 29: 417-434 https://doi.org/10.1016/S1055-7903(03)00208-2
  2. Araneda, P., I. Tapia, and B. Gomez-Silvia. 1992. Microalgas del Norte de Chile II. Cultivo en medios de bajo costo de dos cepas de Dunaliella salina (Teodoresco, 1905) natives del desierto de Atacama. Estud. Oceanol. 11: 53-59
  3. Ben-Amotz, A., A. Katz, and M. Avron. 1982. Accumulation of $\beta$-carotene in halotolerant algae: Purification and characterization of $\beta$-carotene-rich globules from Dunaliella bardawil (Chlorophyceae). J. Phycol. 18: 529-537 https://doi.org/10.1111/j.1529-8817.1982.tb03219.x
  4. Ben-Amotz, A. and M. Avron. 1983. On the factors which determine massive $\beta$-carotene accumulation in the halotolerant alga Dunaliella bardawil. Plant Physiol. 72: 593-597 https://doi.org/10.1104/pp.72.3.593
  5. Cifuentes, A. S., M. Gonzales, M. Conejeros, V. Dellarossa, and O. Parra. 1992. Growth and carotenogenesis in eight strains of Dunaliella salina Teodoresco from Chile. J. Appl. Phycol. 4: 111-118 https://doi.org/10.1007/BF02442459
  6. Cifuentes, A. S., M. Gonzales, and O. Parra. 1996. The effect of salinity on the growth and carotenogenesis in two Chilean strains of Dunaliella salina Teodoresco. Biol. Res. 29: 227-236
  7. Chin, H. S., F. Breidt, H. P. Fleming, W.-C. Shin, and S.-S. Yoon. 2006. Identifications of predominant bacterial isolates from the fermenting Kimchi using ITS-PCR and partial 16s rDNA sequences analysis. J. Microbiol. Biotechnol. 16: 68-76
  8. Coleman, A. W. 2003. ITS2 is a double edged tool for eukaryote evolutionary comparisons. Trends Genet. 19: 370-375 https://doi.org/10.1016/S0168-9525(03)00118-5
  9. Coleman, A. W. 2007. Pan-eukaryote ITS2 homologies revealed by RNA secondary structure. Nucl. Acids Res. 35: 3322-3329 https://doi.org/10.1093/nar/gkm233
  10. Coleman, A. W. and J. C. Mai. 1997. The internal transcribed spacer 2 exhibits a common secondary structure in green algae and flowering plants. J. Mol. Evol. 44: 258-271 https://doi.org/10.1007/PL00006143
  11. Coleman, A. W., R. M. Preparata, B. Mehrotra, and J. C. Mai. 1998. Derivation of the secondary structure of the ITS-1 transcript in Volvocales and its taxonomic correlations. Protist 149: 135-146 https://doi.org/10.1016/S1434-4610(98)70018-5
  12. Farris, J. S. 1989. The retention index and rescaled consistency index. Cladistics 5: 417-419 https://doi.org/10.1111/j.1096-0031.1989.tb00573.x
  13. Farris, J. S., A. V. Albert, M. Källersjo, D. Lipscomb, and A. G. Kluge. 1996. Parsimony jackknifing outperforms neighbor-joining. Cladistics 12: 99-124 https://doi.org/10.1111/j.1096-0031.1996.tb00196.x
  14. Feliner, G. N. and J. A. Rossello. 2007. Better the devil you know? Guidelines for insightful utilization of nrDNA ITS in species-level evolutionary studies in plants. Mol. Phylogen. Evol. 44: 911-919 https://doi.org/10.1016/j.ympev.2007.01.013
  15. Ginzburg, M. 1987. Dunaliella: A green alga adapted to salt. Adv. Bot. Res. 14: 93-103
  16. Goloboff, P. 2002. NONA ver 2.0
  17. Gomez, P. I. and M. A. Gonzalez. 2001. Genetic polymorphism in eight Chilean strains of the carotenogenic microalga Dunaliella salina Teodoresco (Chlorophyta). Biol. Res. 34: 23-30
  18. Gomez, P. I., A. Barriga, A. S. Cifuentes, and M. A. Gonzalez. 2003. Effect of salinity on the quantity and quality of carotenoids accumulated by Dunaliella salina (strain CONC-007) and Dunaliella bardawil (strain ATCC 30861) Chlorophyta. Biol. Res. 36: 185-192
  19. Gonzalez, M. A., P. I. Gomez, and R. Montoya. 1999. Comparison of PCR-RFLP analysis of the ITS region with morphological criteria of various strains of Dunaliella. J. Appl. Phycol. 10: 573-580 https://doi.org/10.1023/A:1008035422784
  20. Gonzalez, M. A., A. W. Coleman, P. I. Gomez, and R. Montoya. 2001. Phylogenetic relationship among various strains of Dunaliella (Chlorophyceae) based on nuclear ITS rDNA sequences. J. Phycol. 37: 604-611 https://doi.org/10.1046/j.1529-8817.2001.037004604.x
  21. Hamburger, C. 1905. Zur Kenntnis der Dunaliella salina und einer Amobe aus Salinenwasser von Cagliari. Arch Protistenkd 6: 111-130
  22. Jin, E. S., C. G. Lee, and J. E. W. Polle. 2006. Secondary carotenoids in Haematococcus pluvialis (Chlorophyceae); biosynthesis, regulation and biotechnology. J. Microbiol. Biotechnol. 16: 821-831
  23. Leonardi, P. I. and E. J. Caceres. 1994. Comparative analysis of the fine structure of young and adult individuals of Dunaliella salina (Polyblepharidaceae, Chlorophyceae) with emphasis on the flagella apparatus. J. Phycol. 30: 642-653 https://doi.org/10.1111/j.0022-3646.1994.00642.x
  24. Lerche, W. 1937. Untersuchungen uber Entwicklung und Fortpflanzung in der Gattung Dunaliella. Arch Protistenkd 88: 236-268
  25. Loeblich, L. A. 1982. Photosynthesis and pigments influenced by light intensity and salinity in the halophile Dunaliella salina (Chlorophyta). J. Mar. Biol. Assoc. UK 62: 493-508 https://doi.org/10.1017/S0025315400019706
  26. Masjuk, N. P. 1972. On phylogeny and taxonomy of the genus Dunaliella Teod. Ukr. Bot. Zh. 29: 744-749
  27. Masjuk, N. P. 1973. Morfologija, sistemetica, ekologija, geograficeskoe, rasprostranenie roda Dunaliella Teod. Naukova Dumka, Kiev, p. 244
  28. Nixon, K. 2002. WinCada ver. 1.00.08
  29. Olmos-Soto, J., J. Paniagua-Michel, R. Contreras, and L. Trujillo. 2002. Molecular identification of $\beta$-carotene hyperproducing strains of Dunaliella from saline environments using species-specific oligonucleotides. Biotechnol. Lett. 24: 365-369 https://doi.org/10.1023/A:1014516920887
  30. Pick, U., L. Karni, and M. Avron. 1986. Determination of ion content and ion fluxes in the halotolerant alga Dunaliella salina. Plant Physiol. 85: 195-198
  31. Preisig, H. R. 1992. Morphology and taxonomy, pp. 1-15. In M. Avron and A. Ben-Amotz (eds.). Dunaliella: Physiology, Biochemistry, and Biotechnology. CRC Press, Boca Raton, U.S.A
  32. Teodoresco, E. C. 1905. Organisation et developpement du Dunaliella. nouveau genre de Volvocacee-Polyblepharidee. Beih. Bot. Centralbl. Bd. 18: Abt1