Bacterial and Fungal Communities in Bulk Soil and Rhizospheres of Aluminum-Tolerant and Aluminum-Sensitive Maize (Zea mays L.) Lines Cultivated in Unlimed and Limed Cerrado Soil

  • Mota, Da (Laboratorio de Genetica Microbiana, Instituto de Microbiologia Prof. Paulo de Goes, Universidade Federal do Rio de Janeiro) ;
  • Faria, Fabio (Laboratorio de Genetica Microbiana, Instituto de Microbiologia Prof. Paulo de Goes, Universidade Federal do Rio de Janeiro) ;
  • Gomes, Eliane Aparecida (EMBRAPA/CNPMS - Empresa Brasileira de Pesquisa Agropecuaria, Centro Nacional de Pesquisas de Milho e Sorgo) ;
  • Marriel, Ivanildo Evodio (EMBRAPA/CNPMS - Empresa Brasileira de Pesquisa Agropecuaria, Centro Nacional de Pesquisas de Milho e Sorgo) ;
  • Paiva, Edilson (EMBRAPA/CNPMS - Empresa Brasileira de Pesquisa Agropecuaria, Centro Nacional de Pesquisas de Milho e Sorgo) ;
  • Seldin, Lucy (Laboratorio de Genetica Microbiana, Instituto de Microbiologia Prof. Paulo de Goes, Universidade Federal do Rio de Janeiro)
  • Published : 2008.05.31

Abstract

Liming of acidic soils can prevent aluminum toxicity and improve crop production. Some maize lines show aluminum (Al) tolerance, and exudation of organic acids by roots has been considered to represent an important mechanism involved in the tolerance. However, there is no information about the impact of liming on the structures of bacterial and fungal communities in Cerrado soil, nor if there are differences between the microbial communities from the rhizospheres of Al-tolerant and Al-sensitive maize lines. This study evaluated the effects of liming on the structure of bacterial and fungal communities in bulk soil and rhizospheres of Al-sensitive and Al-tolerant maize (Zea mays L.) lines cultivated in Cerrado soil by PCR-DGGE, 30 and 90 days after sowing. Bacterial fingerprints revealed that the bacterial communities from rhizospheres were more affected by aluminum stress in soil than by the maize line (Al-sensitive or Al-tolerant). Differences in bacterial communities were also observed over time (30 and 90 days after sowing), and these occurred mainly in the Actinobacteria. Conversely, fungal communities from the rhizosphere were weakly affected either by liming or by the rhizosphere, as observed from the DGGE profiles. Furthermore, only a few differences were observed in the DGGE profiles of the fungal populations during plant development when compared with bacterial communities. Cloning and sequencing of 16S rRNA gene fragments obtained from dominant DGGE bands detected in the bacterial profiles of the Cerrado bulk soil revealed that Actinomycetales and Rhizobiales were among the dominant ribotypes.

Keywords

References

  1. American Association of Cereal Chemists. 1976. Approved Methods of the American Association of Cereal Chemists. Saint Paul, MN
  2. Anderson, I. C. and J. W. G. Cairney. 2004. Diversity and ecology of soil fungal communities: Increased understanding through the application of molecular techniques. Environ. Microbiol. 6: 769-779 https://doi.org/10.1111/j.1462-2920.2004.00675.x
  3. Baldani, J. I. and V. L. Baldani. 2005. History on the biological nitrogen fixation research in graminaceous plants: Special emphasis on the Brazilian experience. An. Acad. Bras. Cienc. 77: 549-579 https://doi.org/10.1590/S0001-37652005000300014
  4. Barcelo, J. and C. Poschenrieder. 2002. Fast root growth responses, root exudates, and internal detoxification as clues to the mechanisms of aluminum toxicity and resistance: A review. Environ. Exper. Bot. 48: 75-92 https://doi.org/10.1016/S0098-8472(02)00013-8
  5. Bastián, F., A. Cohen, P. Piccoli, V. Luna, R. Baraldi, and R. Bottini. 1998. Production of indole-3-acetic acid and gibberellins A1 and A3 by Acetobacter diazotrophicus and Herbaspirillum seropedicae in chemically-defined culture media. Plant Growth Regul. 24: 7-11 https://doi.org/10.1023/A:1005964031159
  6. Brimecombe, M. J., F. A. De Leij, and J. M. Lynch. 2001. The effect of root exudates on rhizosphere microbial populations, pp. 95-140. In R. Pinton, Z. Varanini, and P. Nannipieri (eds.), The Rhizosphere - Biochemistry and Organic Substances at Soil- Plant Interface. Marcel Dekker, New York
  7. Cançado, G. M. A., S. N. Parentoni, A. Borem, and M. A. Lopes. 2002. Evaluation of nine maize inbred lines in diallel cross in relation to aluminum tolerance. Pesq. Agrop. Bras. 37: 471-478 https://doi.org/10.1590/S0100-204X2002000400007
  8. Costa, R., M. Gotz, N. Mrotzek, J. Lottmann, G. Berg, and K. Smalla. 2006. Effects of site and plant species on rhizosphere community structure as revealed by molecular analysis of microbial guilds. FEMS Microbiol. Ecol. 56: 236-249 https://doi.org/10.1111/j.1574-6941.2005.00026.x
  9. da Silva, K. R. A., J. F. Salles, L. Seldin, and J. D. van Elsas. 2003. Assessment of the diversity of Paenibacillus spp. in the rhizosphere of different maize cultivars in two soils by Paenibacillus-specific PCR-DGGE and sequence analysis. J. Microbiol. Methods 54: 213-231 https://doi.org/10.1016/S0167-7012(03)00039-3
  10. Dianese, J. C., L. T. P. Santos, and C. Furlanetto. 1994. New Meliola species on Salacia crassifolia. Fitopatol. Bras. 19: 314
  11. Duineveld, B. M., G. A. Kowalchuk, A. Keijzer, J. D. van Elsas, and J. A. van Veen. 2001. Analysis of bacterial communities in the rhizosphere of chrysanthemum via denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA as well as DNA fragments coding for 16S rRNA. Appl. Environ. Microbiol. 67: 172-178 https://doi.org/10.1128/AEM.67.1.172-178.2001
  12. EMBRAPA. 1979. Servico Nacional de Levantamento e Conservacao de Solos. Manual de métodos de análise de solo. Rio de Janeiro, RJ
  13. Eory, V. J., F. R. Momo, and M. Alvarez. 1995. Growth and survival of Azospirillum in roots and maize rhizospheres with different levels of acidity. Rev. Argent. Microbiol. 27: 99-105
  14. Fuentes, J. P., D. F. Bezdicek, M. Flury, S. Albrecht, and J. L. Smith. 2006. Microbial activity affected by lime in a long-term no-till soil. Soil Till. Res. 88: 123-131 https://doi.org/10.1016/j.still.2005.05.001
  15. Gage, D. J. 2004. Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiol. Mol. Biol. Rev. 68: 280-300 https://doi.org/10.1128/MMBR.68.2.280-300.2004
  16. Garbeva, P., J. A. van Veen, and J. D. van Elsas. 2004. Microbial diversity in soil: Selection of microbial populations by plant and soil type and implications for disease suppression. Annu. Rev. Phytopathol. 42: 243-270 https://doi.org/10.1146/annurev.phyto.42.012604.135455
  17. Garbeva, P., J. Postma, J. A. van Veen, and J. D. van Elsas. 2006. Effect of aboveground plant species on soil microbial community structure and its impact on suppression of Rhizoctonia solani AG3. Environ. Microbiol. 8: 233-246 https://doi.org/10.1111/j.1462-2920.2005.00888.x
  18. Germida, J. J., S. D. Siciliano, J. R. de Freitas, and A. M. Seib. 1998. Diversity of root-associated bacteria associated with fieldgrown canola (Brassica napus L.) and wheat (Triticum aestivum L.). FEMS Microbiol. Ecol. 26: 43-50 https://doi.org/10.1111/j.1574-6941.1998.tb01560.x
  19. Horwath, W. R., L. F. Elliott, and J. M. Lynch. 1998. Influence of soil quality on the function of inhibitory rhizobacteria. Lett. Appl. Microbiol. 26: 87-92 https://doi.org/10.1046/j.1472-765X.1998.00278.x
  20. Hugenholtz, P., B. M Goebel, and N. R. Pace. 1998. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 180: 4765-4774
  21. Kennedy, N., E. Brodie, J. Connolly, and N. Clipson. 2004. Impact of lime, nitrogen and plant species on bacterial community structure in grassland microcosms. Environ. Microbiol. 6: 1070-1080 https://doi.org/10.1111/j.1462-2920.2004.00638.x
  22. Kochian, L. V., O. A. Hoekenga, and M. A. Pineros. 2004. How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu. Rev. Plant Biol. 55: 459-493 https://doi.org/10.1146/annurev.arplant.55.031903.141655
  23. Kowalchuk, G. A. 1999. Fungal community analysis using denaturing gradient gel electrophoresis (DGGE), pp. 3.4.6.1-16. In A. D. L. Ackermann, J. D. van Elsas, and F. J. de Brujin (eds.), Molecular Microbial Ecology Manual. Kluwer Academic Publishers, Dordrecht, The Netherlands
  24. Ma, J. F. and S. Hiradate. 2000. Form of aluminum for uptake and translocation in buckwheat (Fagopyrum esculentum Moench). Planta 211: 355-360 https://doi.org/10.1007/s004250000292
  25. Ma, J. F. and J. Furukawa. 2003. Recent progress in the research of external Al detoxification in higher plants: A mini review. J. Inorg. Biochem. 97: 46-51 https://doi.org/10.1016/S0162-0134(03)00245-9
  26. Ma, J. F., S. J. Zheng, and H. Matsumoto. 1997. Detoxifying aluminum with buckwheat. Nature 390: 569-570
  27. Ma, J. F., P. R. Ryan, and E. Delhaize. 2001. Aluminum tolerance in plants and the complexing role of organic acids. Trends Plant Sci. 6: 273-278 https://doi.org/10.1016/S1360-1385(01)01961-6
  28. Mariano, E. D. and W. G. Keltjens. 2004. Variation for aluminum resistance among maize genotypes evaluated with three screening methods. Commun. Soil Sci. Plant Anal. 35: 2617-2637 https://doi.org/10.1081/CSS-200030412
  29. Marschner, P., C. H. Yang, R. Lieberei, and D. E. Crowley. 2001. Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biol. Biochem. 33: 1437-1445 https://doi.org/10.1016/S0038-0717(01)00052-9
  30. Mumford, K. G., J. F. MacGregor, S. E. Dickson, and R. H. Frappa. 2007. Multivariate analysis of ground water and soil data from a waste disposal site. Ground Water 27: 92-102 https://doi.org/10.1111/j.1745-6592.2006.00127.x
  31. Nubel, U., B. Engelen, A. Felske, J. Snaidr, A. Wieshuber, R I. Amann, W. Ludwig, and H. Backhaus. 1996. Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J. Bacteriol. 178: 5636-5643 https://doi.org/10.1128/jb.178.19.5636-5643.1996
  32. Oros-Sichler, M., N. C. Gomes, G. Neuber, and K. Smalla. 2006. A new semi-nested PCR protocol to amplify large 18S rRNA gene fragments for PCR-DGGE analysis of soil fungal communities. J. Microbiol. Methods 65: 63-75 https://doi.org/10.1016/j.mimet.2005.06.014
  33. Paterniani, M. E. A. G. Z. and P. R. Furlani. 2002. Aluminum toxicity tolerance of maize inbred lines and hybrids evaluated in nutrient solution. Bragantia 61: 11-16 https://doi.org/10.1590/S0006-87052002000100003
  34. Perin, L., L. Martínez-Aguilar, G. Paredes-Valdez, I. Baldani, P. Estrada-de los Santos, V. M. Reis, and J. Caballero-Mellado. 2006. Burkholderia silvatlantica sp. nov., a diazotrophic bacterium associated with sugar cane and maize. Int. J. Syst. Evol. Microbiol. 56: 1931-1937 https://doi.org/10.1099/ijs.0.64362-0
  35. Pineros, M. A., J. E. Shaff, H. S. Manslank, V. M. Alves, and L. V. Kochian. 2005. Aluminum resistance in maize cannot be solely explained by root organic acid exudation. A comparative physiological study. Plant Physiol. 137: 231-241 https://doi.org/10.1104/pp.104.047357
  36. Salles, J. F., J. A. van Veen, and J. D. van Elsas. 2004. Multivariate analysis of Burkholderia species in soil: Effect of crop and land use history. Appl. Environ. Microbiol. 70: 4012-4020 https://doi.org/10.1128/AEM.70.7.4012-4020.2004
  37. Seong, C. N., M. Goodfellow, A. C. Ward, and Y. C. Hah. 1993. Numerical classification of acidophilic actinomycetes from acid soil. Kor. J. Microbiol. 31: 355-363
  38. Smalla, K., G. Wieland, A. Buchner, A. Zock, J. Parzy, S. Kaiser, N. Roskot, H. Heuer, and G. Berg. 2001. Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: Plant-dependent enrichment and seasonal shifts revealed. Appl. Environ. Microbiol. 67: 4742-4751 https://doi.org/10.1128/AEM.67.10.4742-4751.2001
  39. Tate, R. L. 2000. Soil Microbiology, 2nd Ed. Wiley, New York
  40. Thorn, G. 1997. The fungi in soil, pp. 63-127. In J. D. van Elsas, J. T. Trevors, and E. M. H. Wellington (eds.), Modern Soil Microbiology. Marcel Decker, Inc., New York