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' SOME ITERATIVE ALGORITHMS FOR THE |
GENERALIZED MIXED EQUILIBRIUM-LIKE PROBLEMS
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ABSTRACT. In this paper, we introduce and analyze a new class of generalized |
mixed equilibrium-like problems. By using the auxiliary principle technique, we
suggest three iterative algorithms for the generalized mixed equilibrium-like prob-

lem. Under certain conditions, we establish the convergence of the iterative al-

gorithms. Our results extend, improve and unify several known results in this
field. |
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1. Introduction

Equilibrium problems theory provide us a natural, novel and unified frame-
work to study a wide class of problems arising in economic, finance, transporta-
tion, network and structural analysis, elastic and optimization. It is well known
that equilibrium problems include variational inequalities and related optlmlza-
tion problem as special cases [1-14]. :

In 2002, Moudafi [12] studied the sensitivity and algorithm for a class of
mixed equilibrium problems. In 2004 and 2005, Ding [5, 6] used the auxiliary
principle technique to suggest several predictor-corrector iterative algorithms for
a few classes of generalized and general mixed variational inequality problems
and generalized mixed implicit equ1hbr1um-hke problems.

Inspired and motivated by the recent results in [3, 5, 8, 10, 14}, in this paper,
we introduce a new class of generalized mixed implicit equilibrium-like prob-
lems, which include the generalized mixed equilibrium-like problem, the gener-
alized mixed variational-like inequality problem, the generalized mixed equilib-
rium problem and the mixed variational inequality problem in [3, 5, 8, 10, 14]
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as special cases. By applying the auxiliary principle technique, three iterative
algorithms for solving the generalized mixed equilibrium-like problems are sug-
gested and analyzed. The convergence of the iterative sequences generated by
the algorithms are also investigated. Our results improve and generalize many
known results in [3-14].

2. Preliminaries

Let H be a real Hilbert space endowed with the norm || - || and inner product
{-,-),respectively. Let K be a nonempty convex subset of H. Let T\A,B : H —
H and n: H x H — H be nonlinear continuous mappings. Let FF: Hx Hx H —
(—o00, 400}, ¢ and a : H x H — (~00, + 00| be functionals. Now we consider the
following generalized mixed equilibrium-like problem (in short, GMELP):

Find u € H such that

F(Tu, Au, v)+ (Bu, n(v, u)) + (v, u) —p(u, u)+a(u,v—u) > 0, Vve K. (2.1)
Special cases. -

(A) If o(v,u) = f(v), a(u,v) = 0 for all u,v € H, then the GMELP(2.1)
reduces to the following mixed equilibrium-like problem: find u € H such that

F(Tu, Au,v) + (Bu,n(v,u)) 20, Vve K,

which 1s new and includes previously known equilibrium p'roblems as special
cases.

(B) If Bu = a(u,v) = 0 for all u,v € H, then the GMELP(2.1) collapses to
the following problem: find v € H such that

F(Tu, Au,v) + o(v,u) — o(u,u) >0, Yv € K,

which is called a mared equilibrium-like problem and appears to be a new one.
(C) If A = I, where I is an identity mapping, and F(Tu,u,v) = (Tu,gv —
gu), n(u,v) = gu — gv, a(u,v) = 0, p(v,u) = f(v) for all u,v € H, then the

GMELP(2 1) reduces to the following mixed varlatlonal like inequality problem

find v € H such that - -

(T'w — Bu,gv — gu) + f(v) — f(v) >0, VveK,
which is known as the generalized variational inequality and studied by Yao [14].
(D) If F(Tu, Au,v) = 0, n(u,v) = v—u, p(v,u) = f(v) and a(u,v) = 0 for all
u,v € H, then the GMELP(2.1) collapses to the followmg problem: find u € H
such that

(Bu,v—u) + f(v) — f(u) >0, YveK,
which was introduced and studied by Cohen [3].

- For a suitable and appropriate choice of F\7n, T, A, B, ¢ and a, one can obtain

various classes of equilibrium and variational inequality problems as special cases
of the GMELP(2.1).

We need the following concepts.
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Definition 2.1. Let F : H x H x H — (—00,+0], p and a : H x H —
(—oo, +00] be three functionals. Let T,A,B: H — Hand n: H x H — H be
nonlinear continuous mappings.

(1) F is said to be partially relazed strongly monotone with respect to T' and
A if there exists a constant » > 0 such that

F(Tu, Au,v) + F(Tv, Av,z) <r|z —u||, Vu,v,z € H;
(2) F is said to be mized pseudmonotone with respect to IT', A and B if |

F(Tu, Au,v) + (Bu,n(v,u)) + (v, u) — o(u,u) + a(u,v —u) > 0
= ‘_F(T’U, A'U,U) - (B'U, 7?(‘“: ’U)) + ‘,0('0, 'U.)
—(u,u) + alu,v—u) >0, Vu,ve H;

(3) B is said to be partially relaxed n-strongly monotone if there exists a
constant s > 0 such that - |

(Bu — Bu,n{w,v)) > —sflw—ul|*, u,v,we H;
(4) o is said to be skew-symmet‘mlb if
e(u,u) + p(v,v) — p(u,v) —p(v,u) >0, Yu,v € H;

(5) a is said to be a coercive continuous bilinear form if there exist ¢ > 0 and
d > 0 such that

a(v,v) > cllv||* and a(u,v) < d||lullljv], Vu,ve H.

Definition 2.2. ([1, 8]) Let K be a nonempty convex subset of a Hilbert H
and E : K — R be a Fréchet differentiable. F is said to be |
(1) n-convex if
E(v) — E(u) > (E'(u),n(v,u)),Vu,v € K;

(2) n-strongly convez if there exists a constant & > 0 such that

E() — E(w) — (E (1), n(v, 1)) > ollu—v|?, Vu,v€K.

3. Iterative algorithms and convergence theorems

In this section, we introduce and analyze some new iterative algorithms for
the GMELP(2.1) by using the auxiliary principe technique. For a given u €
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H, consider the problem of finding a solution w € H satisfying the auxiliary
problem:

(w—u,v—w) + pF(Tu, Au,v) + p(,Bu', n(v,u)) 4 )
+ pp(v,u) — pp(u,u) + pa(u,v —u) >0, YweK, (3.

where p > 0 is a constant. We notice that if w :.u, then clearly, w is a solution
of the GMELP(2.1).

Now we suggest the following new predictor-corrector iterative algorithm for
the GMELP(2.1).

Algorithm 3.1. Let F : H x Hx H — (—o00,+], p anda : H x H —
(—00,+00] be three functionals. Let T, A,B: H — H andn: Hx H — H be
nonlinear continuous mappings. For a given ug € H, compute the approzimate
solution un4+1 by the following iterative schemes:

(Unt1 — Wn, ¥ = Uny1) + pF(Twn, Awn, v)

~ + p(Bwn,n(v, uny1)) + pp(v, Unt1) — PP(Un+1, Unt1) (3.2)
+ pa(un+1,v —Unt1) 20, YvEK, '-

<wn _ynvv_wﬂ) +ﬁF(Tyn1Ayﬂav) .
+ B{BYn, n(v, wn)) + Be(v, wn) — B(Wn,wn) (3.3)
+ Ba(wn,, v —wy) >0, YveK,

(Yn — Un, ¥ — Yn) + pF(Tup, Aun,v)

+ u(Bun, (v, Yn)) + 1PV, Yn) — o(Yn,Yn) - (3.4)
+ pa(yn, v —yn) >0, VVEK,

For the convergence of Algorithm 3.1, we have the following result.

Theorem 3.1. Let H be a real Hilbert space and K be a nonempty convex
subset of H. Let T,A,B: H — H andn: H x H — H be nonlinear continuous
mappings, where n(z,y) = —n(y,x), Vz,y € H. Assume that F: Hx Hx H —
(~00,+400], p: Hx H — (—00,+00] anda : Hx H — (—00,+00] are continuous
functionals. Assume that F is partially relaxed strongly monotone with respect
to T and A with constant r > 0, B is partially relazed n-strongly monotone with
constant s > 0, ¢ is skew-symmetric and a is a coercive continuous bilinear
form. If u € H is an exact solution of the GMELP(2.1), then for any up € K,
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the iterative sequence {un}n>¢ generated by Algorithm 3.1 converges strongly to
u. |

Proof. Let u € H be an exact solution of the 'GMELP(ZH.I).. It follows that

pF(T'u, Au,v) + p(Bu,n(v,u)) + pp(v,u)

— pp(u,u) + pa(u,v —u) 20, Vve K, Y

- BF(Tu, Au,v) + B{Bu, n(v, u)) + Be(v, u) (3.6)
= Bo(u,u) + Balu,v —u) 20, W€K, -

uF(Tu, Au,v) + p(Bu, n(v, u)) + pe(v, u) (3.7)

— po(u,u) + pa(u,v—u) >0, VveK.

Let n be a nonnegative integer. Taking v = un41 in (3.5) and v = u in (3.2), we
infer that

PF(Tu, A, un 1) + p(Bt, (unt1, 1)) + pp(tni1,0)

3.8
~ ot 4) + Pty gy —w) 20 B8
and |
(un+-1 = Wn, U — un+1> + pF(Tw'rh A'wna U) + P(B’U)n, U(U, un—H)) o (3 9)
+ po(u, Uny1) — pP(Unt1,Un+1) + Pa(Uni1, U ~ Uny1) 2 0. '
Adding (3.8) and (3.9), we obtain that
(u'n+1 — Wnp,U — un+1) |
> —plF(Twp, Awn,u) + F(Tu, Au, tni1)] |
| (3.10)
~ pl{Bwn, n{t, un11) + (Bu, n(uns1,u))] + palu — Uns1,u — Unt1)

> —prilunyr — wn”2 ~ pSltnt1 — wal* + peflu - Un+1“2a

where we have used the fact that F' is partially relaxed strongly monotone map-
pings with constant » > 0 and and B is partially relaxed n-monotone mappings
with constant s > 0, respectively, <,o is skew-symmetric and a is a coercive con-
tinuous bilinear form. Note that

fu —wnl® = flu~ un+i|‘2 + Jltns1 — wnll? + 2(unt1 — Wa, U — Uny1).  (3.11)
In light of (3.10) and (3.11), we have

1 — 2

wn“‘ulz 1 p(8+’l‘)

1+ 2pc” 1+ 2pc
1 5

1+ 2pc wn = "

IA

||Un+1 — U||2
(3.12)

IA
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Taking v = w, in (3.6) and v = u in (3.3), we deduce that

BF(Tu, Au,wn) + B(Bu, n{wn, u)) + Bp(wn, u)

| - 3.13
— Bp(u,u) + Ba(u,w, —u) >0 i ( )
and |
(wn — Yn,U — wn) + ﬂF(Tyna Ayna u) + ﬁ(Byn, n(ua'wn)) (3 14)
+ Bo(Unt1,wn) — Bo(wn, wn) + Ba(wn,u — wn) > 0. '
'.A'dding (3.13) and (3.14), we infer that
(Wp — Un, U — Wp) |
> —-B1F(Ty,, Ay, u) + F(Tu, Au, w,
[F(Tyn, Ayn, u) + F( )] (3.15)

— B{(Byn, n(u, wn)) + (Bu, n(wn,u))] + Ba(u — wn, u — wy)
> —B(s + T)lun+1r — wal® + Bellu — un4all?

because F' is partially relaxed strongly monotone mappings with constant r >
0 and and B is partially relaxed n-monotone mappings with constant s > 0,

respectively, ¢ is skew-symmetric and a is a coercive continuous bilinear form.
In terms of (3.15) and

1% = Jlwn — ul|® + ||wn — ynll® + 2(wn — Yn, u — wy), (3.16)

”u — Un
we obtain that

1 o 1-20B(s+r)

fwn — uf)? < lym —uf? - —2 Dy, — |
1 +12ﬁc . 14 20c (3.17)
S 1 + Zﬁc.nyn ‘"'UHQ-

Similarly, taking v = y, in (3.7) and v = u in (3.4), and using the partially
relaxed strong monotonicity of F, and partially relaxed n-monotonicity of B, we
conclude that = B |

(Yn = Uny u ~ Yn) 2 —4(r + 8)llyn — unll® + pellu — ynll*.
As in the proof of (3.12) and (3.17), we have

1
1+ 2uc

< 1
- T 14 2uc

1—2u(s+r)
14 2uc

lyn — ul < lun — ull* - lun — ynl?

(3.18)

lun — ull*.
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It follows from (3.12) (3.17) and (3.18) that

|uns1 — u|l < tllun — ull, (3.19)
1

where t = € (0,1). It follows from (3.19) that
V(14 20c)(1 + 28¢)(1 + 2uc)

”uﬂ+l - u” < tn+1”u0 — u“s vn 2 0,

that is, {un}n>0 converges strongly to the solution u of the GMELP(2.1). This
completes the proof. | O

Now, we suggest and analyze a new iterative method for the GMELP(2.1) by
using the auxiliary principle technique. For a given u € K, consider the problem

of finding w € K satisfying the auxiliary generalized mixed equilibrium-like
problem

(E'(w) — E'(u) + ABu, n(v,w)) + AF(T'u, Au, v)
> Me(w, w) — ¢(v,w)] — Aa(w,v —w), VvEK,
where A > 0 is a constant and E’ is a differential of a strongly convex functional

E. We note that if w = u, then w is a solution of the GMELP(2.1). This

observation enables us to suggest the following iterative method for solving the
GMELP(2.1).

Algorithm 3.2. Let F : Hx Hx H — (—00,+x], p anda : H x H —
(—00,+00] be three functionals. Let T,A,B: H — H andn: Hx H — H be
nonlinear continuous mappings. For a given ug € K, compute the approximate
solution uny1 € K by the following iterative scheme:

(E'(uny1) — E' (un) + ABun, n(v, nt1)) + AF (Tupn, Atn,v)

> Mo(Unt1, Unt1) = 9V, Un+1)] | o (3.20)
- )\a(unﬂ,v_—— un+1), Vv € K,. n 2> 0, | B

where A > 0 is a constant.

Theorem 3.2. Let H KT, A,B,F,(p_'(md a be as in Theorem 3.1. Let n :
H x H — H satisfy that n(z,y) = n(z,z) + n(z,y),Vz,y,z € H. Assume that
E: K — R is a Fréchet differentiable and n-strongly convez with constant [>0.

If A € (0, : ) and u € K is an ezxact solution of the GMELP(2.1), then the

S+r
sequence {un }n>0 generated by Algorithm 3.2 converges strongly to u.

Proof. Let u € K be a solution of the GMELP(2.1). Then

AF(Tu, Au,v) + MBu, (v, v))

21
> Mp(u,u) — Ap(v,u) — Aa(u,v —u), VveK, (3.21)
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where A > 0 is a constant. Now taking v = un41 in (3.21) and v = u in (3.20),
we have |

AF(Tu, Au, tn41) + MBu, n(Un41,u))

> dp(u,u) — Ap(tnyy,u) — Aa{u, Uny —u), VYn >0 (3.22)
and o | .
<E"(un+1) E'(un) + MBuin, n(u, un+1)> + AF(Tun, Aun, ) P
= )\[ (Unt1, Unt1) — .‘P(‘U’ un-!—l)] Aa(Uni1, U — Un+1) Vn-2 0. o
Put | | | ' ¥ e
G(u,w) = E(u) — E(w) — (E'(w), n(u,w)), VYw € K.
Using 7-strong convexity of E, by (3.22) and (3.23) we deduce
G(u,un) — G(u, Un41)
= E(tny1) — E(un) — (E'(un), n(un+1, tn))
+ (B (uns1) = B'(un), n(w,uni1))
> l[lunﬂ un||? - /\[ (T'up, Aun,u) + F(Tu, Au, un+1)] (3.24)

_ A<Bu ~ Bun, M(uns1,u)) + Acllu = unt: II2

[ A(s + "")]”un+1 — un“2 + Acfju — Un+1 “
Aclu — unga]?. |

AVARNAVAS

Suppose that un,+1 = un, for some ng > 0. It follows from (3.24) that u, = u for
all n > no. Suppose that u,+; # u, for any n > 0. Thus (3.24) ensures that the
sequence {G(u, Un ) }n>o0 is strictly decreasing. It follows from 7-strong convexity
of E that G(u, -) is nonnegative in K. Consequently, the sequence {G(u, Un)}n>0
converges to some number. It follows from (3.24) that the sequence {u,}n>0
converges to the solution u of the GMELP(2.1). This completes the proof. [

We now use the auxiliary principle technique to suggest a prox1mal method
for ‘the GMELP(2 1), and prove that the convergence of the proximal method
requlres only pseudomonotomclty, which is a weaker condition than monotomc—
ity. For a given u € K, consider the auxiliary problem of ﬁndmg weEK such
that

(B'(w) - E'(u) + - Bu,n(o, w)) + VE(Tw Aw, v
2 [p(w,w) = p(v,w)] - va(w,v —w), VveK,

where > 0 is a constant and E" is the differential of a Strongly convex functional
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Algorithm 3.3. Let F : H x H x H — (~00,+00), p anda : H x H —
(=00, +00] be three functionals. Let T,A)B: H — H andn: Hx H — H be
nonlinear continuous mappings. For a given ug € K, compute the approzimate
solution uny1 € K by the following iterative scheme:

(E'(uns1) = ' (un) + 7Bun i1, 10, tn41)) + ¥ (Tunsr, Atiny1,0)

> 7[@(ns1,uns1) = 90, unt1)] (3.25)

-‘Ya(u'n-}-lav_u'n-i-l)a VUEKanzoa

where v > 0 is a constant.

Theorem 3.3. Let F: HxHxH — (—00,+00}, p anda : HXxH — (—o0, +oo]
be three functionals, where @ is skew-symmetric. Let T AB: H — H and
n: Hx H — H be nonlinear continuous mappings. Assume that F is mized
pseudomonotone with respect to T,A and B, and E : K — R is a Fréchet
differentiable and n-strongly convex with constant | > 0 and n(z,y) = n(z, z) +

n(z,y),Vz,y,z € H. Ifu € K is an ezact solution of the GMELP(2.1), then the
sequence {un}n>0 generalized by Algo'mthm 3.8 converges strongly to u.

P'roof. Let u € K be a solution of the GMELP(Z.I). Then |
F(Tu, Au,v)+ (Bu,n(v,u)) > [p(u,u)—¢(v,u)] —a(u,v-u), Vve K, (3.26)
which implies that | . o I
—F(Tv, Av,u)—(Bv,n(u,v)) > {p(u,u)— <p(v u)]—a(u,v— u) Vv e K (3.27)

since F' is mixed pseudomonotone with respect to T, A and B.
Taking v = un41 in (3.27), we have |

— F(Tuny1, Ating1,4) — (Btnt1,m(%, tnt1))
2> [p(u,u) — @(un+1,u)] — a(u, uny1 — u). |
Now as in Theorem 3.2, by (3.24), (3.25) with v = u and (3.28), we have
G(u,un) — G{u, uny1)
= E(un+1) — E(un) — (E"(un), N(tn+1, un))

(B ) = B () o )

> Yunsr — unll? = YETuns1, Ating1, 1) — Y(Btng 1, 7(th Ung1))

(3.28)

+ v [w('uﬁn,um-l) - ‘P(“"u‘n“)] = Y0(Un+1,% ~ Unt1)

> Utin 1 = nll? + 7100, 4) = @ (tn41,) + @1, ung1) — Pt uns)|
+ ya(t — Un41, U — Uny)
> lllun+1 — un||® + yellu - un+1||

> yelu = ung %
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The rest of the proof is similar to that of Theorem 3.2, and is omltted “This
completes the proof. S S - ]
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