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1. Introduction

In this paper, we characterize the helical polynomial space curves and solve
the first-order Hermite interpolation in the space for them. |

In their seminal paper [9], Farouki and Sakkalis introduced the Pythagorean-
hodograph (PH) curves in the plane R?, as curves whose component functions
are polynomials and having a polynomial as their speed. The arc length and the
unit normal vector field of a PH curve are expressed by a polynomial and a curve
whose component functions are rational, respectively. These properties give a
rational representation of the offset curves to a PH curve. Thus PH curves are
very useful in computer-aided design and manufacturing applications (1], [3]
[4], [5], [8], and [10]).

Farouki, al-Kandari and Sakkalis [6] studied the first-order Hermite interpo-
lation problem for the spatial PH quintic using the quaternion model, which
was proposed by Choi et al. [2]. For given initial and final points p;, ps, and
their hodographs d;, dy, the Hermite interpolants comprise, in general, a two-
parameter family. To fix these free parameters and to have a desired curve to
the Hermite inperpolations, Farouki et al. [7] used the helical polynomial space
curves.
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In this paper, we characterize and solve the first order Hermite interpolation
problem for helical polynomial space curves. Farouki et al. [7] solved those
interoplation problem for almost all Hermite data. Here we show that for every
Hermite data, there exist some Hermite interplants by helical polynomial space
curves. To solve the first-order Hermite interpolation problem, we use the fact
that the projection of a helical PH curve onto the plane, which is perpendicular
to the direction vector of the helix, is also a PH curve. For given first-order
Hermite interpolation data, we first find out the direction of helix and obtain
Hermite interpolation data on the above plane. Now we solve the interpolation
on the plane, for example from [8], a,nd obtain the Hermite mterpolants to the
original data.

The organization of this paper is as follows. In section 2 we characterize the
helical polynomial space curves and study some basic properties of the helical
polynomial space curve. In section 3 we solve the first-order Hermite interpola-
tion in the space for helical polynomial space curves.

2. Helical polynomial space curves

Let R™ be the Euclidean space of dimension nn with n > 2. Let R[t] be the set
of polynomials with real coefficients. By a polynomial curve in R", we mean a
curve r: R — R” from the space of real numbers R to the Euclidean space R™,
whose component functions z1(t), z2(t), ..., Z,(t) are members of R[¢].

A polynomial curve r(t) = (z,(¢), z2(t),...,xn(t)) in R™ is said to be Pytha-
gorean if there is a polynomial o(t) in R[t] such that

z1(t)? + z2(t)? + - + 2 (8) = 0 (t)°

A polynomxal curve r{t) = (:vl(t) z2(t),...,zn(t)) is called a Pythagorean-:
hodograph (PH) curve if its velocity vector or hodogmph r'(t) = (ml(t), .z (t))
is Pythagorean. -

We present the characterization of the PH curves in ]R""+1

Theorem 1 ([11]). The polynomial curve r(t) = (zo(t),z1(t),...,Tn(t)) is a
PH curve in the E'uclzdean space R™"*1 with

To(t)* + zy () + - +a:.(t) 'a(t)gl

for some polynomial o(t) if and only if there exist polynomial functzons h(t),
u(t), u(t), a(t), b(t) and ax(t) for 1 <k <n with

ged(u(t), v(®)b(2)) = 1 = ged(v(t), ult)a(t)) = ged(a (2), .., an(i));
and a(t)b(t) = oy (t)2 + - - - + an(t)? so that

zo(t) = ht) [u(t)?a(t) — v(®)b(2))
z (t) = h(t) :Qu(t)ak(t)v(t)], 1<k<n,

o(t) = £h(t) [u(t)2a'(t) + v(t)%(t)] .
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We now characterize the helical polynomial space curves. At first we give the
definition and basic properties of helices:

A heliz is a regular space curve r(t) such that for some fixed unit vector u,

r'(t
<||r’§t§l]’u> is constant. u is called the direction vector of heliz. For more

information, see [12].

Lemma 1. Letr(t) = (z(t),y(t), 2(t)) be a polynomial space curve withx'(t) # 0
for allt € R. Let h(t) = ged {a:’(t),y’(t),z’(t)} so that x'(t) = h(t)s'(t) with
some primitive space curve s'(t). Then r(t) is a heliz if and only if s(t) =

/ s'(t) dt is a heliz.

Let r(t) = (z(t),y(?), 2(t)) be a helical polynomial space curve with its direc-
tion vector (1,0,0) of helix. In [7], Farouki et al. proved a helical polynomial
space curve is PH. So we can write |

_$’(t)2 +_y4.(t)2+z;(t)2.: 0'(t)2

for some positive-valued polynomial o(t). Since the direction vector of the helix
is (1,0,0), we have z'(t) = co(t) for some constant c. In particular, we have

deg(r(t)) = deg(z(2)).

Lemma 2. Let r(t) = (z(t),y(t), 2(t)) be a helical polynomial space curve with
the direction vector (1,0,0) of heliz. Then the plane curve rp(t) = (y(t), z(t)) is
PI _ _ _ YU

Proof. Let o(t) be a positive-valued polynomial such that
' ()% + ()2 + 2/ (t)? = a(t)%.

Since r(t) is a helical polynomial space curve with its direction vector (1,0,0),
we have z/(t) = co(t) for some constant ¢ with —1 < ¢ < 1. It implies that

(1 — cz) ' (t)? = ¢? (y"(t)2 + z'(t)z).

If c=1orc=—1, then §'(t) = 0, Z/(t) = 0, and z'(t)?> = 1. In this case,
r(t) = (t+a,b,d) or r(t) = (-t + a,b,d) for some real numbers a, b, and d.
Therefore, the plane curve rp(t) = (b,d) is a PH plane curve as a constant
curve.

Suppose that ¢ # 1 and ¢ # —1. we have

1-—c? e 2

Y (1) + 2'(t)% = Czc z'(t)? = (\/ 1-— c2cr(t)) :
Therefore, the plane curve rp(t) = (y(t), z(t)) is PH. O
We have a constant ¢ such that z'(t) = co(t). If c = 1 or ¢ = —1, then

we have r(t) = (z(t),a,b), which is a straight line. So we assume that ¢ # 1



448 Kwang-Il Kim and Sunhong Lee

and ¢ # —1. Since y'(t)% + 2'(t)? = (\/1 — czo(t))z, we may assume that
deg(r(t)) = deg(y(t)). |
By Theorem 1, we have
z'(t) = h(t){u(t)za(t) - v(t)2b(t)}
y'(t) = h(t)2u(t)aa (t)v(t),
2'(t) = h(t)2u(t)az(t)v(t), |

o(t) = hit){ u(t)a(t) + v(H?6(D) },
where gcd (u(t),v t)b(t)) = 1 = ged (u(t)a(t),'u(t)) = ged(a; (), az(t)) and
a1(t)? + az(t)? = a(t)b(t). Moreover, by Lemma 2, we have
ai(t) = 4(t)* - 9(t)*,
ag(t) = 2u(t)d(t),
(1) + aa(t)? = (a()? + 5(t)?)

where ged(@(t), 9(t)) = 1. |
Since z'(t) = ¢ - o(t) for some constant ¢, we have

(1 - c)u(t)’a(t) = (1+ c)u(t)?b(2).

Since gcd(u(t),v(t)b(t)) = 1, we have u(t) = u for some nonzero coi'_ista.nt u.

2
3

Moreover, since ged (a(t), 'v(t)) =1, v(t) = v is a nonzero constant.
We summarize the above result: |

Theorem 2. Let r(t) = (a:(t),y(t),z(t)) be a helical polynomial space curve
with the direction vector (1,0,0) of heliz and o |

- o' (1) + ¥ (t)2 + 2/ (1) = 6(t)2, and x'(t) —c. a(t),
where ¢ is a constant with —1 < ¢ < 1 and o(t) is a polynomial. Then we have
polynomials h(t), @(t), 'z‘}(t) with ged (ﬁ(t),ij(t)) =1 .such that

c(@(t)? + 9(t)?)\
z'(t) = h(t) (i _( (t,—--i _+Cz(t) )),

y'(t) = h(t)(a(t)* — 9(t)?),
2'(t) = h(t) (Zﬁ(t)'i)(t)),

o (EE? + ()2
a(t) = h(t) ( o ) :

3. First-order Hermite interpolation



Helical polynomial space curves 449 .

In this section we solve the first-order Hermite interpolation problem for he-
lical polynomial quintics.

Let p; = (0 0, O) Pr = (pfmapfyapfz) d; (dz:radzysdzz) 7é (070)0): and
df = (dsz,dfy,dys,) # (0,0,0) be data for the first-order Hermite interpolation.
If p;, py, di, and ds are in the same plane, then we can find the first-order

Hermite interpolation in the plane [8]. Therefore we assume that p;, py, d;, and
d; are not in a plane.

At first, we will change the coordinates with an orthonormal transformation
O € SO(n) so that
O(p,-) = Pi, O(Pf) = (ﬁfx,ﬁfysﬁﬁ)a
0(di) = (diz,0,diz),  O(dy) = (djs,0,d5.),

and

Odi)
flo(da)]

O(dy)

o@py 0 >0

.(1,0,0) =

We can find
€11 €12 €13
O=lexn ex e
\€31 €32 €33
as follows: Since p;, py, di, and d; are not in a pla,ne we have

d; d f d;

0,0,0 ' £ 0.
iaq Ty T 000 qar* ndfn
We set
d;  dy di dy
d,; d d; d
ennermen) = LT (e ey - T TR
1 + T _
idi|| ||y ” |d;|| ||df””

and (es1, es2, e33) = (e11,e12,€13) X (€21, €22, €23).
~ Here, we may assume that p;, > 0 without loss of generality, because in this
case of ps; < 0, we can interchange the initial point p; and the terminal point
| dis i
and 0 < -,
10(dJ)| =3

s ~

diz dfs >0 di, ds,
o)l ~ o)l ~ — To@)l ~  Told))] |
We want to obtain a helical polynomial quintic r(¢) = (_:_z:(t),y(t), z(.t)) with
r'(t)? = o(¢)? for some polynomial &(t) such that
r(0)=pi, r(l)=p;, r(0)=d; r'(1)=d;. - (1)

Suppose that r(t) be a helical polynomial quintic satisfying (1). Let u =
(uz, Uy, u,) be the direction vector of O(r(t)) so that the constant

ps. Let a be an angle such that cosa =

Then we have

£0.
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. O(r'(t)) o _
c= <u, ]]O(r’(t))[|> satisfies 0 < ¢ < 1. Then since
0@\ _ /. Oy
< ’ ”O(di)”> < HO(df)H>
d | .
- di.  dg, 0. di. _  dp. <0
lod)ll ~ Todpll =~ To@)l ~ oAl ™ ™
we have u, = 0. Thereforg we can write u = (cos(—8),sin(—#8),0) for some

constant 8 with ~3 <6< 5"
We change the coordinates with the rotation

cosf@ —sin@ 0O
R=1|sin® cos® 0],
\ 0 0 1
and we set

R(O(pZ)) - pi: R(O(pf)) . (ﬁf:vaﬁfyvﬁfZ)i
and

o

diz, diy, diz), R(O(df)) = (dfx,dfyadfz) -
t))) = (&(t), §(t), 2(t)) is a helical polynomial quintic
) of helix. Since c is p081t1ve we have

R(O(d;)) =

(
Therefore £(t) = R(O( (
with the direction (1,0,0

~

Prz >0 and diz > 0.

Thus we have two subcases:
Subcase 1.: If pgy, < 0, then 1 < 8 < Bs,

where (1 = —arccos( Pty ) (—-—<51<0) and ,82 —g-
- \/ pfy

, | ﬁfy
\/ﬁﬁm +ﬁ§y "

~ Subcase 2.: If ps, > 0, then 81 < 8 < (B2, where 3; = arccos

(0<B2<3)and b = —3.
Also we have the constant |
dig
IRO@)]’

c=cosf -cosa =

which satisfies Z'(t) = co(t) and 0<c<l.
We consider the projection tp(t) of ¥(t) onto the y-z plane. By Lemma 2,
I p(t) is a PH curve in the plane, which satisfies -

£p(0) = (Piy, Piz), Ep(1) = (BrysByz), Fp(0) = (diy, diz), Tp(1) = (éfyv&iz)'
Until now we have assumed that r(t) is a helical polynomial curve and have
chosen @ by the direction vector of ¥(f). From now on we do not take this
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assumption and will obtain helical polynomial curves r(t), which satisfies (1).

We take € as a variable with 3; < 8 < 33, and from the transformation O and
R, we have the first-order Hermite data

(ﬁiy(g)vﬁiz (6))7 (ﬁfy(g)aﬁfz(g))3 (&iy(e)s &iz (9))5 (dhfy(g)ﬂ &12(9))1

and c(f) = cos@ - cosa. Then from 8] we have PH curves sg(t) satisfying

'89(0) = (ﬁiy(g)aﬁiz(e))i 59(1) = (ﬁf‘l}(g)’ﬁfz(g))’

and
s5(0) = (diy(6), i 0)),  56(1) = (d7,(6), . 0))

We also know the length S() of the curve sg(t). For the first-order Hermite

interpolation in the plane, see Appendix.

Here we note that the curve sg(t) is the projection onto the y-z plane of a

helical polynomial curve ¥(t), whose direction vector is (1,0, 0), if and only if we
have |

5. @

For the curve T is a helix with the direction (1,0, 0) of helix, which satisfies
(

2 +9()° + 2(t)° = o(t)”

for some poSitive polynomial o(t) if and only if

1
prs(8) = c(6) / o(t) dt.

Here we know that
1 :

/0 o(t)dt = \/’1__6(9)25(9).

From now on our main goal is to find 6 for which Equation (2) satisfies,
so that we obtain the helical polynomial quintic r(t) with the direction vec-
tor (1,0,0) of helix. We note that such § always exists: Consider Subcase 1.

1 |
If § = —pB1, then psr(0) = 0 and 6(9)/ o(t)dt > 0, and if 8 = g, then
0 R

m

1
DPrz(0) > 0 and c(9)/ o(t)dt = 0. And as 8 changes from —f; to 5
0 | T

1
and c(6) / o(t)dt > 0 change continuously. Therefore for some 6, we have
0

1 |
P (6) = c(9)/ o(t)dt > 0. By the same method, we can have the result for
Subcase 2. |

For each solution sg(t), we can find 8 for which Equation (2) satisfies by the
Newton method: let . o

= - 5(0) — Ds(6).
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From the graph of f(8), we pick up a point #; near a zero of f(8). For a natural
number m, we set

_ f(6m)
9m+1 9 f’(9m)

With this iterative procedure, 6, conveges a zero of f(8) very quickly. We then
take for example 8 = 6.

From the 6 above, we obtain the solution s¢(t) = (g(t), Z2(t)) and the solution
r(t) = (2(t),9(t), 2(¢t)) for the space with

\/1—6_“};5/; \/3)’(3)2 + 2’(5)2 ds = c/oto(s)ds.

#(t) =

Then we have

1
30)=0=pix,  30)=c [ ols)ds = psx
0

and from = d - — =Cc= , we see that
| | \/dg:r:+ iy+df \/d2:c+d%y+d§z
/(0) = —— 0)2 + @2, + &, = di,
0= SV TOTTEOT = 2
and
al 2 2 _ 2 —
#(0) = \/_\/y OF + 702 = = \/d + &2 = d.

Finally we obtain the helical polynomial quintic r(t) = O_I(R"l(i'(t))).

Example 1. Let p; = (0,0,0), d; = (10,0,10) and py = (10,10,10), dy =
(0,10, 10) be given Hermite data. We can find the orthogonal matrices

0.4082482905  0.4082482905 0.8164965810
O = | —0.5773502693 —0.5773502693 0.5773502693 | ,
0.7071067814 —0.7071067814 0
cos(f) —sin(f) O
" R= {sin(@) cos(8) O
| 0 Y

with (ﬁimaﬁiy,ﬁiz) = R(O(pg)), (djm,diy,&i;) - R(O(dt)): (ﬁfxaﬁfyaﬁfZ) _=
R(O(pf)), and (éfx,éfy,éfz) = R(O(df)). For Hermite data f’i = (ﬁz‘y,ﬁiz),

D; = (diy,diz), and l3f = (Pfy:Dfz), f)f == (cf-fy,cf,;,,;), we have four solutions.
Since pg, < 0, we obtain |

B = —1.230059417, [ = —g-
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FIGURE 1. The graphs of f(6)

For each solutions to Hermite interpolation in the y-z plane, we can find 6

satisfying (2) by the Newton method: —0.16179, —0.16179, —0.09007, 0 09007.
See Fig. 1 and the followmg table | |

6, 8, 93 04 95 B¢

11 0]-0.14051 | -0.16116 | -0.16179 | -0.16179 | -0.16179

21 0]-0.14051 { -0.16116 | -0.16179 | -0.16179 | -0.16179

3| 01-0.08328 | -0.09001 | -0.09007 | -0.09007 | -0.09007
14| 01]-0.08328 | -0.09001 | -0.09007 | -0.09007 | -0.09007

Also, the energies associated with the rotation-minimizing frame for each
solution

1 :
b= / k(r(€))*Ir'(€)] dé

are 32.230, 32.230, 0.127, and 8.958, where x is the curvature of the curve.
Therefore we choose the third one for the solution.

4. Concluding remark

We characterize the PH curves in the general Euclidean spaces. Upon this
characterization, we have solved the first-order Hermite interpolation problem in
the space for the helical polynomial space curves. The key idea comes from the
fact that the projection of a helical polynomial space curve onto the plane, which
is perpendicular to the direction vector of the helix, is a PH curve. Then we
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FIGURE 2. The PH quintic Hermite interpolations

make the Hermite interpolation problem in the space to that in the plane. Since
the solution of the Hermite interpolation problem in the plane is well-known, we
could obtain the solution in the space. The characterization of the PH curves
would produce further investigations on the PH curve theory.

'_'A_ppend'ix“f. -
Let P; = (Biy, piz), Di = (diy, di), and Py = (pgy,py2), Dy = (dgy, diz) be

data for the Hermite interpolation in the plane. From [8] we always find four
solutions. The solutions are

s(t) =ki:0 Pk (2) (1 —1¢)5F¢k,

where -
. . 1. . 1. .
po = Py, P1:Pi+gDi, P4=Pf“nga ps = Py,
and | |
1 |
p2=p1+ g(uoul — VU1, UgV1 + U1Vp),
. e, 1 S
- p3=p2+ 1—5(’&'1.— 1, 2uavy) + E(Uouz — UpU2, UpU2 + U2p).

Here, ug, u1, 2, vg,v1 and v are given by



Helical polynomial space curves 455

(uo,v0) = \/g (\/lAPOI + Az, sign(Ayo)/|Apo] — Axo)-,

(ug,v2) = i\/; (\/|AP4| + Az, sign(Ays)v/|Aps] - Az4) ,

3 1
(U1_, vn) = -—-Z(uo +u2, Yo + vo) % \/;(\/d + a, sign(b)\/_d —a),

where Apg = (Azo, Ayo), Aps = (Az4,Ays),a,b and d are defined by

| APO — (Aﬂ?o,AI‘JO) : P1 — pOa_
Aps = (Az4, Ays) = ps — P4,
15

9 5 |
a= —(ud—v2+ud - v2) + = (upuz — vov2) + = (x4 — 71),
16 8 2
15

b= -8—('(L0’UO + uqug) + =(uov2 + ugvg) + —(ys — v1),

8 2
d= va?+ b2

Moreover the length S of each solution have a closed form:

8.

9.

5 1 | 2
S =—(|A — —(ug —d.
8(| Po!| + |Ap4]) 12(u0u2 + vov2) + T
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