DOI QR코드

DOI QR Code

A First-principles Study on the Electronic Structures and Magnetism of Antiperovskite Ti0.96Co0.02Fe0.02O2

페로브스카이트 구조를 가지는 Ti0.96Co0.02Fe0.02O2의 전자구조와 자성

  • Published : 2008.06.30

Abstract

We calculated the electronic structures of substituted cobalt nitrides, that is $FeCo_3N$ and $NiCo_3Ni$, by using the all electron fullpotential linearized augmented plane-wave (FLAPW) energy band method, and investigated the influence on the magnetic properties of $Co_4N$ due to the substitution of Co atom located at corner sites by iron and nickel atoms. We found that the magnetic moments of CoII atoms located at the face-center positions in these compounds are almost same to that of $Co_4N$. The magnetic moments of Fe and Ni atoms in $FeCo_3N$ and $NiCo_3Ni$ are 3.086 and $0.795\;{\mu}_B$, and they have the localized nature of magnetism.

페로브스카이트 구조를 가지는 전이금속 질화물인 $FeCo_3N$$NiCo_3N$의 전자구조를 전전자 총퍼텐셜선형보강평면파(all electron FLAPW) 방법에 의해 계산하고, 그 결과를 $Co_4N$의 전자구조와 비교함으로써 꼭지점에 위치한 Co 원자(CoI)를 Fe과 Ni 원자로 대치하였을 때의 영향을 탐구하였다. CoI원자를 각기 Fe와 Ni 원자로 대치한 경우에 면심위치의 CoII 원자의 자기모멘트는 1.458과 $1.494\;{\mu}_B$으로 대치하지 않은 경우와 비교하여 커다란 차이가 없었다. $FeCo_3N$$NiCo_3N$에서 꼭지점에 위치한 Fe와 Ni 원자의 자기모멘트는 각기 3.086과 $0.795\;{\mu}_B$로 거의 포화된 값을 가졌으며, 국소적 자성을 나타냈다.

Keywords

References

  1. A. V. dos Santos and C. A. Kuhnen, J. Alloys Comp., 321, 60 (2001) https://doi.org/10.1016/S0925-8388(01)00954-9
  2. A. V. dos Santos, J. C. Krause, and C. A. Kuhnen, Physica B, 382, 290 (2006) https://doi.org/10.1016/j.physb.2006.03.002
  3. P. Mohn and S. F. Matar, J. Magn. Magn. Mater., 191, 234 (1999) https://doi.org/10.1016/S0304-8853(98)00312-6
  4. C. A. Kuhnen and A. V. dos Santos, J. Magn. Magn. Mater., 130, 353 (1994) https://doi.org/10.1016/0304-8853(94)90694-7
  5. P. Mohn, K. Schwarz, S. Matar, and G. Demazeau, Phys. Rev. B, 45, 4000 (1992) https://doi.org/10.1103/PhysRevB.45.4000
  6. A. V. dos Santos, J. C. Krause, and C. A. Kuhnen, Physica B, 382, 290 (2006) https://doi.org/10.1016/j.physb.2006.03.002
  7. C. A. Kuhnen, R. S. de Figueiredo, and A. V. dos Santos, J. Magn. Magn. Mater., 219, 58 (2000) https://doi.org/10.1016/S0304-8853(00)00418-2
  8. C. A. Kuhnen and A. V. dos Santos,, Solid State Comm., 85, 273 (1993) https://doi.org/10.1016/0038-1098(93)90452-S
  9. K. Oda, T. Yoshio, and K. Oda, J. Mater. Sci., 22, 2729 (1987) https://doi.org/10.1007/BF01086464
  10. S. F. Matar, A. Houari, and M. A. Belkhir, Phys. Rev. B, 75, 245109 (2007) https://doi.org/10.1103/PhysRevB.75.245109
  11. E. Wimmer, H. Krakauer, M. Weinert, and A. J. Freeman, Phys. Rev. B, 24, 864 (1981) https://doi.org/10.1103/PhysRevB.24.864
  12. M. Weinert, E. Wimmer, and A. J. Freeman, Phys. Rev. B, 26, 4571 (1982) https://doi.org/10.1103/PhysRevB.26.4571
  13. P. Hohenberg and W. Kohn, Phys. Rev., 136, B864 (1964) https://doi.org/10.1103/PhysRev.136.B864
  14. W. Kohn and L. J. Sham, Phys. Rev., 140, A1133 (1965) https://doi.org/10.1103/PhysRev.140.A1133
  15. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 77, 3865 (1996) https://doi.org/10.1103/PhysRevLett.77.3865
  16. D. D. Koelling and B. N. Harmon, J. Phys. C, 10, 3107 (1997) https://doi.org/10.1088/0022-3719/10/16/019