DOI QR코드

DOI QR Code

Growth Properties of Sputtered ZnO Thin Films Affected by Oxygen Partial Pressure Ratio

산소분압비에 따른 ZnO 박막의 성장특성

  • Published : 2008.05.30

Abstract

ZnO thin films were grown on a glass by RF sputtering system with RF power 100W and oxygen partial pressure of $0%{/sim}30%$. Elliptic constants were measured by using a phase modulated spectroscopic ellipsometer and analyzed with the Tauc-Lorentz dispersion formula and best fit method in the range of 1.5 to 3.8eV. Also, scanning electron microscope(SEM) was used for the analysis of surface crystallization condition. From elliptic constants spectra, optical constants, thickness and roughness of ZnO films were evaluated. Total thickness of ZnO films obtained by ellipsometry showed good agreement with SEM data. It was found that the grain size of the films were getting smaller with increasing oxygen partial pressure. Band-gap of ZnO films increase with the oxygen partial pressure. These findings clearly indicate that optical properties of ZnO films are strongly dependent on the oxygen partial pressure. It could be explained that increasing the oxygen partial pressure induced high crystalline imperfection in the ZnO films.

산소분압비에 따른 ZnO 박막의 성장특성을 알아보기 위해 RF 스퍼터링 시스템을 이용하여 $0%{\sim}30%$의 산소분압비로 박막을 제작하였다. 위상변조방식의 분광타원계를 이용하여 $1.5{\sim}3.8eV$ 범위에 걸쳐 타원상수를 측정하였고, TL 분산관계식을 이용하여 최적맞춤한 결과 박막과 표면기칠기층의 두께, void 비율을 알 수 있었고, ZnO 알갱이의 크기는 산소분압비의 증가에 따라 그 크기가 작아짐을 알 수 있었다. 산소분압비에 따른 ZnO 박막의 밴드 갭은 산소유입량의 증가에 따라 증가하여 ZnO 박막의 광흡수 특성이 산소분압비에 크게 의존함을 알았고, 산소분압비의 증가는 결정의 불완전성을 증가시키는 것으로 나타났다.

Keywords

References

  1. F. K. Sahn, Z. F. Liu, G. X. Liu, B. C. Shin and Y. S. Yu, J. Kor. Phys. Soc. 44, 1215 (2004)
  2. T. Minami, Thin Solid Films 63, 366 (2000)
  3. F. C. M. Van de Pol, Am. Ceram. Soc. Bull. 69, 1959 (1990)
  4. F. S. Hickernell, J. Appl. Phys. 44, 1061 (1973) https://doi.org/10.1063/1.1662307
  5. S. Ono, O. Yamazaki, K. Ohji, K. Wasa, and S. Hayakawa, Appl. Phys. Lett. 33, 217 (1978) https://doi.org/10.1063/1.90320
  6. T. Minami, H. Nanto, S. Takata, J. Appl. Phys. 23, L 280 (1984) https://doi.org/10.1143/JJAP.23.L280
  7. R. R. Potter, C. Eberspacher, L. B. Fabik, 18th IEEE Photovoltaic Specialist Conf., 1659 (1985)
  8. G. S. Kino and W. S. Wagers, J. Appl. Phys. 44, 1480 (1973) https://doi.org/10.1063/1.1662397
  9. H. G. Son, D. H. Hwang and S. H. Cho, J. Korean Vacuum Society 16, 267 (2007) https://doi.org/10.5757/JKVS.2007.16.4.267
  10. M. H. Jun, H. H. Jun, K. C. Kim, J. S. Lee, D. H. Kim, W. P. Choi and S. J. Hwangpo, J. Korean Vacuum Society 16, 453 (2007) https://doi.org/10.5757/JKVS.2007.16.6.453
  11. I. S. An, Ellipsometry (Hanyang University Press, 2000)
  12. S. Y. Kim, Ellipsometry (Ajou University Press, 2000)
  13. D. E. Aspnes, and J. B. Theeten, Phys. Rev. B 20, 3292 (1979) https://doi.org/10.1103/PhysRevB.20.3292
  14. M. Fox, Optical Properties of Solids (Oxford University Press, 2001)

Cited by

  1. Optical Properties of Sputtered Ta2O5Thin Films Using Spectroscopic Ellipsometty vol.18, pp.2, 2009, https://doi.org/10.5757/JKVS.2009.18.2.133
  2. Optical Emission Spectra of Oxygen Plasma Produced by Radio-Frequency Plasma vol.18, pp.2, 2009, https://doi.org/10.5757/JKVS.2009.18.2.102