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Absolute Stability Margins in Missile Guidance Loop

Jong-Ju Kim and Joon Lyou*

Abstract: This paper deals with the stability analysis of a missile guidance loop employing an
integrated proportional navigation guidance law. The missile guidance loop is formulated as a
closed-loop control system consisting of a linear time-invariant feed-forward block and a time-
varying feedback gain. Based on the circle criterion, we have defined the concept of absolute
stability margins and obtained the gain and phase margins for the system assuming 1st order
missile/autopilot dynamics. The correlation between the absolute stability margins and the
margins derived from the frozen system analysis is also discussed.
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1. INTRODUCTION

Proportional navigation guidance (PNG) is widely
used for the terminal homing guidance of missiles
having acceleration controller type autopilots because
of 1its simplicity, effectiveness, and ease of
implementation. For the missile using an attitude
angle controller, which controls heading angle, the
integrated proportional navigation guidance (IPNG)
can be used with various merits of PNG. One of the
advantages to implementing an attitude angle
controller is the easiness of controlling the direction of
missile velocity vector as a missile approaches its
target, which is known as the impact angle. Two major

reasons for controlling the impact angle are as follows.

With the former, for anti-ship or anti-tank missiles, the
terminal impact angle is important for enhancement of
warhead effect. In the latter, when a missile has the
mission of passing through several waypoints of a
given order, a smooth flight path can be obtained by a

suitable selection of the impact angle at each waypoint.

Note also that IPNG is the integral form of PNG, two
guidance laws with different expressions are identical
if initial state values in IPNG law are the same. In this
work, we assume that the missile system is based on
an attitude angle controller and IPNG law.

Many works [1-5] have been conducted on the
subject of stability analysis of missile guidance loop

Manuscript received December 4, 2006; revised August 15,
2007 and January 29, 2008; accepted March 10, 2008.
Recommended by Editorial Board member Hyo-Choong Bang
under the direction of Editor Jae Weon Choi.

Jong-Ju Kim is with Agency for Defense Development 1-1
Yuseong P.O.Box 35, Daejeon 305-600, Korea (e-mail:
1jkim2261@yahoo.co.kr).

Joon Lyou is with the Department of Electronics
Engineering, Chungnam National University, Daejeon 305-
764, Korea (e-mail: jlyou@cnu.ac.kr).

* Corresponding author.

using PNG. Guelman [1] investigated the finite time
absolute stability of PNG systems by employing the
Kalman-Yakubovitch-Popov lemma. In Tanaka et al.
[2,3], the concept of hyperstable range was introduced
and the stable time region for missile guidance loop
using PNG command was derived. Rew ef al. [4]
applied practical stability methods to derive a lower
bound on the time-to-go for a PNG system with single
time constant dynamics. Gurfil et al. [5], by using the
well-known circle criterion [6,7], established an
analytic bound for the time of flight up to which
stability can be assured. As the works for guidance
stability of missiles with model uncertainties, Impram
et al. [8] suggested the robust circle criterion and the
robust Popov criterion that had been extended to
systems involving both structured and unstructured
uncertainties in the linear plant. Furthermore, Weiss et
al. [9] studied the stability of modern guidance laws
when the missile’s actual model differs from the
model used in the design, the analysis of which was
performed by means of Lyapunov functions and by
means of the multivariable circle criterion.

This paper suggests the concept of absolute stability
margins in missile guidance loop using IPNG law.
Although the concept of the “absolute-stability gain
margin” was also introduced by Hagiwara et al. [10],
we define not only the absolute stability gain margin
but also the phase margin of the IPNG loop by using
the circle criterion, and show their resemblance to the
results obtained from the frozen system analysis
[1,11].

This paper is organized as follows. A mathematical
model of IPNG loop is described in Section 2. Section
3 suggests the stability regions be obtained by
applying different criteria to the system. Section 4
introduces the concept of absolute stability margins
and presents some illustrative results. Concluding
remarks are given in Section 5.
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2. GUIDANCE LOOP MODEL

Consider a two-dimensional missile-target engage-
ment geometry as shown in Fig. 1, where the missile

M with velocity V,, and the target 7 with

velocity Vo, are treated as point masses, R is the

relative range between missile and target, € is line
of sight (LOS) angle with respect to a reference line,
and 6, and 6&; are flight-path angles of the
missile and the target, respectively.

The kinematic relation between missile and target

motions is obtained by resolving velocity components

of the missile and the target along and normal to the
LOS.

R=Vycos(By —0)~V, cos(By, —0) =V, (1)
RO =Vysin(6 — 0)—V,, sin(8,, - 6), (2)

where V- represents the closing velocity.
Assuming that Gy, =6, V), >V and R({;)=0

where t, denotes the total flight time of the

engagement, we obtain the expression for the line of
sight rate to be

6=L(0-0,). 3)
tgo

where ¢, =t ¢ —1t is the time-to-go for the missile to

intercept the target.

The IPNG law for a missile having an autopilot of
attitude angle controller type is defined as

6-=N6, (4)

where N is called the navigation constant.

The missile/autopilot (M/AP) dynamics can be
expressed generally in the following transfer function
form assuming a linear missile dynamics

By (5) by 5" Hb, S+t by

G(s) 2 .(5)

- Bu(s)

n
S +an_1 S

Missile

Fig. 1. Missile-target engagement geometry.

where we assume that 6&,,(s) and 6-(s) are
coprime and G(0)=1, ie., by=ay. The transfer
function G(s) can be realized in the phase-variable
canonical form with no loss in generality

i‘:AX'f'bgc, (6)

QM = CTX, (7)

where G(s)ch(s[—A)_lb and x is the system
stateand 4, b and ¢! are defined by

0 r 0 .- 0
0 o 1 .- 0
A: y ' : * ' ’ (8)
0 0 O 1
| —4dy g Ay
o
b=|-|, 9)
1
T =[bo . bn—l]' (10)

Let us define a new state vector z as

zZ=X. (11)
Then x isrewrittenintermsof z and 6. as

x=Alz-A41h6,. (12)
The substitution (12) in (6) yields

z= Az + b6, (13)

Defining ¢ = 9(; and using (3), (4), (6), and (7), we
obtain

Nel a7z = (NP A7'b+1)6,

oo

E =

(14)

Defining o = Nl 471z - (NcTA_lb +1)6- we rewrite
Egs. (13) and (14) as

z=Az+beg, (15)
O = ¢, (16)
oc=h z+T 6., (17)
gz—;—l——o, (18)
20
where
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Fig. 2. IPNG loop block diagram.

Wrane a4, (19)
r2—(Neh 47'b+1). (20)

The closed-loop configuration block diagram for
the linearized two-dimensional IPNG system is shown
in Fig. 2. This linear time-varying system consists of a
linear time-invariant element in the forward path and a
time-varying gain in the feedback. The linear time
invariant portion 1s

H(s)=Z8 o T (51— ay '+ L
£(s) )

(21)

and the feedback is the kinematic gain 1/7,,.

From the inverse matrix form of 4 and G(0)=1,
we can easily show that

I'=N-1 (22)
and
H(s)= l(N G(s)-1). (23)
s

3. ABSOLUTELY STABLE REGIONS

The IPNG loop system expressed in Fig. 2 falls into
categories of Lur’e problem [12] and its stability
information could be obtained through a well-known
absolute stability theory [12,13].

First, to find the conditions under which the system
remains stable, we suppose that the M/AP dynamics is
modeled as a simple first-order system

1

G(s) = ,
() Ts+1

(24)

where T is atime-constant of M/AP dynamics.

Applying the well-known Routh-Hurwitz criterion
to the linearized IPNG loop under the assumption of
frozen time, the conditions for the [IPNG loop remain
stable and are readily obtained as follows

i) N>1, | (25)
) 1, >T or SRy =(T, ), (26)

where SRy denotes the stable region by frozen

system analysis, the so-called Hurwitz region for
system stability, and these are the only necessary

conditions for system stability.

According to the method suggested by Guelman [1]
which is stated in terms of Popov criterion, sufficient
conditions for absolute stability of the IPNG system
are derived as

i) N>1, 27)
i) 1,,>NT or SRp=(NT,o), (28)

where the stable region denoted by SRp is said to be

Popov region and it is assumed that IPNG starts from
the infinite time-to-go. This assumption may not be
practical in an actual situation.

For the stability analysis of a missile guidance loop
which is only defined over a finite time interval, using
the circle criterion, we obtained the sufficient
conditions for absolute stability of the IPNG loop with
1% order M/AP dynamics as follows

i) N >1, (29)
11) /80 <tg0 < o, or SRC = (,30,0:0], (30)
where the stable region obtained by circle criterion 1s
expressed as SR, o=t s —to with initial flight
time ¢, and f, is calculated in terms of o, T
and N as (see Appendix A)
T(A+E)
(NT —ay)’
AENT? +(N? -4N+DTay +Nag (31

B2 2N —1)ay —T)(NTag.

Po =

4. ABSOLUTE STABILITY MARGINS

To investigate the stability margin for the IPNG
Joop with 1% order M/AP dynamics by using absolute
stability concepts we first notice that the transfer
function and frequency response function of the linear
time-invariant portion of the IPNG system are given

by
_(N-1)-Ts

His)= s(Ts+1) - G2)

X(@)2 R, H(jo)=——5—, (33)
T o +1
2 2 A

V(@) 21, H(jo)=—2 . (2N D (34)
(T 0" +1)

For the frozen system in which we assume the time-
varying element 7= l,, as a fixed value, the gain

and phase margins at each 7 1n Hurwitz region can
be obtained by employing the definition of stability
margin for linear time-invariant systems. The figure
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for the gain margin at a fixed time point 7 in
Hurwitz region is shown in Fig. 3. Letting 7= S T;
S 21, the gain margin is given by

GMp £20log)y(z/T)=20log;, S db. (35)

The figure for the phase margin is specified in Fig.
4. From (33) and (34), the frequency @, for

|H(ja)0)| =7 1sderived with 7=8T as

\/—(52 ~1) +\/S4 +{4(N =1)> =215 +1
J2ST

Then the phase margin is obtained from X(w,) and

Y(wy) at @, as follows

(002

.(36)

Y{(wy)

PMy =tan™
X(@y)

: (37)

The absolute stability margins can be introduced in

t v
—vNT’ ~/ _T .
i X(@)
|
L/ H(jw)
K H(jw) l:
|
i
]
|
i
Fig. 3. Gain margin for frozen system.
4 Y(w)
o
X(w)

Fig. 4. Phase margin for frozen system.

the same framework as the stability margin concept
for linear time-invariant systems, hence we may
define the following.

Definition: The absolute stability gain margin and
phase margin by the circle criterion are defined as the
maximum gain and phase variations of the linear time-
invariant element satisfying the circle criterion,
respectively.

To seek the absolute stability margins for the IPNG
system with 1% order M/AP dynamics, we assume

7(ty) = oy as a fixed value and obtain gain and phase
margins at each 7 in the stable region SR =
(By, @g] by applying the circle criterion.

Considering Fig. 5, the absolute gain margin at ~
in SR~ 1is obtained as follows. When the Nyquist
plot of KH(jw) with increasing K meets at one

point on the critical circle whose center is located at
—~(ay +7)/2, the maximum gain variation K ..

occurs and then the absolute gain margin is given with
the 4™ order algebraic equation for K .x by (see

Appendix B)

GM =20log)o Ko db, (38)
—2N(oy +0)T 3 K;:’lax
+{N (ay +7)* —2(N* —4N + Dy} T* K2

—2Nayr(ag + )T K o +(p7)* =0.

T4 K2

max

ax

(39)
In Fig. 6 the graph for the absolute phase margin is
indicated in which the absolute phase margin at 7 1is

expressed as y. The absolute phase margin y at
each 7 in SR~ can be obtained with X(w) and
Y(@) in (33) and (34) from the following equations
by trial and error.

X'(w)=X(w)cosy +Y(w)siny, (40)

Critical circle

Fig. 5. Gain margin from circle criterion.
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A
Critical circle Y®)
— —r /—%
-
X(w)
4
H'(jo)
H(jo)
Fig. 6. Phase margin from circle criterion.
Y'(w)=-X(w)siny +Y(w)cosy, (41)
, oy +7 , oy — T

X' @+ +Y(0) =" 4

The absolute gain margin GM, obtained from
(38) and the gain margin GM from (35) at each ¢
in SR-=(1.76T,10T] for N=3 and ¢,=10T,
are listed in Table 1 and are compared in Fig. 7. The
phase margins PMy from (37) and y, ie., PM,

from (40), (41) and (42) are also included in Table 2
and Fig. 8.

From the results, the stability margins from both
approaches monotonously decrease with similar shape
as the time-to-go 7 approaches zero. This observa-
tion clearly indicates the general characteristics of

Table 1. Gain margins in case of ¢y =107.

/T 1.76 | 2 4 6 8 10
GMp (db) | 48 | 6 12 | 15.6|18.1 | 20
GMc(db) | 0 | 1.4 |92 | 14 [174] 20

Gain margins in case of t(t0)=10T

Fig. 7. Graph for gain margins in case of «a; =107.

Table 2. Phase margins in case of o =10T7.

/T 1.76 | 2 4 6 8 10
PMpg (deg) | 22.7 | 27.6 | 51.9 | 63.1 | 69.3 | 73.2
PM, (deg) | O 6 |365(535]|64.5|73.2

0 Phase margins in case of t(t0)=10T

Phase margins (deg)

/T

Fig. 8. Graph for phase margins in case of «y =10T.

PNG-type missile guidance loop as the missile nears
intercept.

5. CONCLUSIONS

It is well-known that no conclusion can be drawn
about stability of nonlinear time-varying systems by
employing the frozen system analysis. That is, the
conditions provided by frozen system analysis are the
necessary, though not sufficient conditions, for system
stability. Thus, we may naturally wonder whether the
stability margins obtained by the frozen system
analysis, which have been widely used for stability
analysis of missile guidance loop, are reasonable or
not.

By applying the circle criterion, we introduced the
concept of absolute stability margins and derived the
stability margins for the missile guidance loop
assuming 1% order M/AP dynamics and IPNG law.
Based on the fact that the circle criterion provides
only the sufficient conditions and the frozen system
analysis provides the necessary conditions for system
stability, it can be concluded that the stability margins
of the missile guidance loop considered in this work
are located in between the values from the circle
criterion and the values by the frozen system analysis.

It may also be noteworthy that the trend and values
of the results obtained from the two approaches were
very similar to each other, and these results may show
to some extent a certain justification of use of the
frozen system analysis for stability analysis of missile
guidance loop.
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APPENDIX A
From (33) and (34), we obtain

Y? =—{X(X + T (NT + X). (A1)

The equation of the critical circle which is tangential
to H(jw) locus and passes through the points -«

and —f, is given by
X+ (o + )/ 2% + Y2 = {(ag - By) /2. (A2)
Canceling Y from (Al) and (A2) gives

{(N=2)T +(ay + )} X* + {NT(ctg + By)

2 (A3)
+0§0ﬂ0 —-T }X‘l‘NTaoﬁo = (.

In this case, X has equal roots and its
discriminant becomes zero as follows.

{NT(ctg + By) + By — T*}°

(A4)
—4{(N -2)T +(ay + By)}NTay 3, = 0.

From (A4), we obtain a quadratic equation in S
2 52 2 2
(NT —ay)* By* —2T{NT? +(N? = 4N + )T
+Nay*} By +T*(Nay —T)* =0. (A3)

Therefore, (31) can be obtained from (A5) after some
algebraic manipulations.

APPENDIX B
From (32), the related equations for K .. H(jo)
are defined as follows

~Kpax N T
Xl (@) = Re KmaxH(ja)) — 2ma§ ’ (B1)
7" w” +1
Yi(@) 21, K H(jo)
_ K (T2 0 = (N -1} (B2)

(T > w0° + 1)
From (B1) and (B2), we obtain
2
K =~ {X1(X] + Koy T NK o T+ X7). (B3)

The equation of the critical circle which is tangential
to K,..H(jo) locus and passes through the points

—ag and -7 is given by
(X, +(ag+7)/2)" + Y% ={(ay - 17)/2}>.  (B4)
Canceling Y] from (B3) and (B4) gives

{(N =2)K T + (g +7)}.X)” + {NK
tayr — Ko T2V X, + NK . Tagr =0. (B5)

max] (O +7T)

In this case, X) has equal roots and its discriminant
becomes zero as follows.

2 242
{NKmaXT(ao + T) + aof — KmaxT }

(B6)
—4{(N =2)K ox T + (g + 7))} NK

Ta()T:O.

ax

The 4™ order algebraic equation for K.y given in (39)
can be easily obtained by (B6).
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