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On Fault Handling in Control Systems

Marcel Staroswiecki

Abstract: Whereas fault diagnosis has been the subject of intensive research since the 1970s, the
design of fault tolerant systems is a recent research field which does not set its foundations in a
unified framework and does not use a unified vocabulary. As a contribution to this special issue,
this paper proposes an ontology for the problem of Fault Handling, that embeds the problem of

Fault Tolerance.
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1. INTRODUCTION

Whereas fault diagnosis has been the subject of
intensive research since the 1970s, both in the Control
and the Artificial Intelligence communities [1,3,7,9]
the design of fault tolerant systems, motivated by
many real life applications (aerospace, power systems,
safety critical systems), is a recent research field
[2,11,17]. Due to this reason, the huge amount of
works that can be found in the literature does not set
its foundations in a unified framework and does not
use a unified vocabulary. As a contribution to this
special issue, we propose an ontology for the problem
of Fault Handling (FH) which includes - but is not
limited to - Fault Tolerance (FT). Quoting [8], “the
term ontology [means] a specification of a
conceptualization Practically, an ontological
commitment is an agreement to use a vocabulary (...)
in a way that is consistent (...) with respect to the
theory specified by an ontology.”

The paper builds a framework that allows to
evaluate new contributions, to understand in what
respect Fault Tolerant Control is different from
Control, how Fault Tolerance complements Fault
Avoidance, how Fault Handling properties can be
ascertained and evaluated for a given design. It is
organized as follows : Section 2 defines a (healthy or
faulty) system from the interconnected components
point of view. The different Fault Handling levels are
analyzed in Section 3, and Section 4 illustrates the
introduced concepts with the example of an estimation
application. Section 5 discusses the evaluation of
Fault Handling performances and Section 6 concludes
the presentation, by stressing also some implementa-
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tion problems that still deserve some research.
2. SYSTEM DESCRIPTION

A system X is a set of interconnected (hardware
and software) components. This section presents the
component based modeling frame as the natural frame
in which fault diagnosis and fault handling concepts
can be clearly set.

2.1. Hardware components

According to the selected granularity of variables
and time (continuous, discrete, synchronous,
asynchronous, etc), different formalisms are used to
model the normal behavior of a component ¢ e 2.
For conciseness and simplicity, only deterministic
systems, continuous variables and continuous time are
considered here : the normal open-loop behavior of a
hardware component ceX is described by state
space equations

H ,(0) %5 = [5(X5,V5,1) =0, (1)

if o is a process component, or by measurement
equations

Hm(c):ycq—gc(xcavcst)zoa (2)

if o is a sensor. In (1) and (2), x, is a local state,

¥, 1s an output signal and v, 1is a vector of input

signals. Interconnections imply that some variabies
are common to several components. Therefore, the
global state x is the concatenation of all the local
states associated with the process components, the
global measurement vector y 1is the concatenation of

all the local measurements associated with the sensors,
and the global input vector « is the concatenation of
all the interconnection variables that are not states.
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2.2. Software components

Extending the description to closed loop systems
needs equations by which control and estimation
signals are synthesized. In a general form, a control
(resp. estimation) component ¢ introduces software

constraints S.(c) (resp. S,(o))

5¢(0): 95(u,2,y) =0, (3)
5¢(0):7,(#,Z,y) =0, (4)
where ¢, and vy, follow from the design

procedure, z is a vector of estimated variables and for
any vector v the notation Vv is defined by

— T .7 .. . .
vT é(v ,vT ,VT,...) (the dimensions of vectors and

the exact number of derivatives that are considered
need not be specified here).

Note that algorithms S.(c) and S,(c) are
correctly executed only if other hardware components
(computers, memories, communication networks)
operate satisfactorily. The behavior, diagnosis and
fault tolerance of these components are not considered
here, being the subject of an intensive research

activity in computer science.

2.3. System behavior
The behavior model of the system is the pair
(C,V), where CE=HUS,H is the set of all

hardware constraints H »(0),H,(c), and § is the

set of all software constraints S,(c) or S,(o)

associated with the system components o <X, and
V 1s the set of all the variables that are involved in
these constraints. A subsystem X, c X is a subset of

components along with their interconnections. Its
model (C;,V;) is easily defined from the model
(C,1).

More generally, a subsystem of X is a subset of

constraints of C along with the variables they involve.
Interconnecting two subsystems whose behavior is

(C,V1) and (C,,V,) boils down to create the
subsystem whose behavior is (C,J) where
C=CGuC, and V=V UV, (the management of

the common variables /; "NV, is evident and is not
detailed here).

2.4. Healthy and faulty situations

No matter whether a component, a subsystem or the
whole system is considered, let C and V be the
constraints and variables under consideration.

Consistency and falsification: Let 7 be a reali-
zation of the variables V. This realization is consistent
with C if all the constraints are satisfied - this is noted

OK(C,I?) - otherwise it 1s inconsistent, i.e., at least

‘one constraint is falsified by V - this is

noted 0K (C, I?) Using the notations OK(C,V'):

VYV, OK(C,V) and lOK(C,V):3V, l0K(C,V)
one has:
Healthy and faulty systems: The pair (C,V) is

healthy (noted ) if OK(C,V) holds:
#y < OK(C,V). (5)

By negating (5), it follows that the definition of a
faulty (C,V) (noted 4)1s:

% < 3ceC: lOK(C,V). (6)

Remark 1: These definitions are independent of
any process by which consistency/inconsistency or
healthy/faulty conclusions are reached. Indeed, the

consistency OK(C,V) or inconsistency —IOK(C, V)

~

conclusion needs the knowledge of the realization 7V,

which is available only if the variables are measured
or if they are estimated from other measured variables.

The #; conclusion needs OK(C, I}) to be checked
true for all possible realizations of V, which is
impossible if there is an infinite number of them. It is
a well known fact that an hypothesis e.g., 74 can

always be falsified (it is sufficient to observe an
inconsistent realization), but it 1s impossible to prove
that it is always true [4,12]. This is obviously the
difficulty of diagnosis algorithms (see below).

Fault modes: A fault is defined as the violation of
one or several constraints in C (a hardware fault
violates constraints in H while a software fault
violates constraints in S ). Note that this definition
does not assume any fault model, and that it covers
both the single and multiple fault cases. Indeed, if all
the violated constraints belong to the same subset
C(o) for some ce€X, then only component ¢ is

faulty, while otherwise several components are faulty.

Obviously, there are lZC‘—l different subsets of

constraints that can be violated, resulting in as many
fault modes, where 2F and |E ‘ are respectively the

power set and the cardinal of a set E.

System models: The set of constraints that should
apply following the system design is the nominal

system model, C,. Let C,#C, be the constraints

that apply under fault mode f, the pair (C,,V) is

the model of the faulty system. When needed, different
representations can be used for C,. For hardware

constraints, additive fault models introduce deviations
in the constraints value, for example (1) - (2) is
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replaced by

xG o fo‘(xo'avo'at) — \Ilg (t)a
Vo = 85 (Xg,Vst) = W (1),

where 1>, = (y5(),yg (1) #(0,0) and 7, is the

fault occurrence time, while parametric fault models
introduce deviations in the constraints parameters, for

example x;— f5(%5,V5,0,6)=0 and y, —g,(x,,
Vs,0,6)=0 with 6 a parameter whose value is 0,

for the nominal system and 6, #6, for the faulty

system. Other models are used for software faults,
they are not detailed here since only hardware faults
will be considered in the sequel.

Uncertain and stochastic systems: For simplicity,

only one set of deterministic constraints C, was

introduced as the model of the nominal system.
Uncertain systems can also be considered, by
generalizing definition (5) to

#% < 3C, e 7, 1 OK(C,,V),

where #y ={C,,ne N} is the
constraints in normal operation. Similarly, stochastic
systems can also be considered, by introducing an
extra set of random variables, and a description of

their distributions in normal (faulty) operation [11,18].

set of possible

2.5. System objectives

When designing a system, hardware components
(1.e., constraints) are selected and interconnected, and
software constraints are designed in order to achieve
specific objectives.

Objective: An objective is a set of specifications (or
properties) P that the system behavior must satisfy.
Functional and safety objectives are distinguished,
according to whether the associated specifications
concern the normal operation (e.g., exhibit a certain
stability degree, exhibit given handling qualities, track
some trajectory with given performances, estimate
some states with given accuracy) or the incidental /
accidental operation (e.g., remain controllable for an
emergency stop, a controlled shut-down sequence).

Valid Configurations: For a given objective P to
be satisfied, there may be different subsets of
hardware and software components that are able to
achieve it. Each subset is called a valid configuration,
and its behavior is described by a specific model. The
notation P(H,S) stands for “The subset of

components A, controlled with algorithm S satisfies
property P, or in other words (H,S) is a valid

configuration for objective P.
Degraded Performances: Defining the objective
may include specifying required performances. In

some cases, it may be useful to define both nominal
and degraded performances, the former being
achieved in nominal operation, the latter being
accepted in faulty operation [10,15].

Weaker property: Degraded performances are

defined by specifying a property P~ that is weaker

than P, 1i.e., such that
VY(H,S):P(H,S)= P (H,S).

Therefore, the pair (P,P ) describes the perfor-

mances that are expected in normal operation,
together with the level of degradation that can be
accepted.

User Selected Operating Mode (USOM): Since
control systems are expected to achieve different
objectives at different times (for example initialization,
production, cleaning, shut-down, etc.), a hybrid
description is necessary. A USOM is a discrete state in
which the system is expected to achieve a given
objective. The current USOM defines the objective
that is requested at a given time. It can be changed
(meaning that objective P is replaced by objective

P) either following a spontaneous transition - for
example, the landing mode is changed into the taxying
mode as soon as the plane has reached the runway - or
by a controlled transition - replacing for example the
autopilot mode by the manual control mode, or
changing the production mode into the shut down
mode.

USOM Automaton: The set of USOMs and the set
of transitions between them defines an aufomaton
which describes the discrete state behavior of the
system, i.e., all the objectives the system can be given.
Its nodes are the system USOMs and its transitions
describe how USOMs are left and entered [3,6].

2.6. Diagnosis algorithms

Diagnosis algorithms are in charge of generating
knowledge about the fault. Typically, three problems
must be solved at any time

Fault detection (FD): From the evolution of the
(known) inputs and outputs on the time window [0,]

find the operating regime, #; or 74, that is most
likely to be true and the time ¢; <t when it started

being true.
Fault isolation (FI): From the evolution of the
known variables on the time window [0,f] find the

subset of the constraints C, that are falsified, if

some violation has been detected (remember that the
link between subsets of constraints and components is
known). |

Fault estimation (FE): From the evolution of the
known variables on the time window [0,f] find the

model of the falsified constraints C, that describe
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the behavior of the faulty system.
Remark 2: (i) some faults are non detectable,
which means that both % or 2 are consistent

with the observed data, (ii) some faults are non
isolable, which means that several subsets of falsified
constraints are consistent with the observed data, (iii)
fault estimation needs a class of fault models to be
defined, and (iv) each of the above problems can
receive imperfect solutions, namely for FD : false
alarms, missed detections, detection delay, for FI :
inaccurate isolation, mis-isolation, and for FE : wrong
model class, wrong model parameters.

3. FAULT HANDLING LEVELS

The fault handling (FH) problem is a decision
problem in the presence of a fault. It can be
summarized under two points:

1) decide if the current system objective can be
achieved in spite of the fault, and control the
system accordingly,

2) when the objective cannot be achieved, decide
about another objective, and control the system
accordingly:.

In the first case, the objective is tolerant to that
specific fault and the fault is said to be recoverable.

Recoverable Fault: A fault is recoverable if the
current system objective can be achieved in spite of its
occurrence.

There are three fault handling levels, that are
addressed in this section : recoverable faults can be
recovered either by passive or by active fault tolerance
(in that case, by using either an accommodation or a
reconfiguration strategy), while objective reconfigura-
tion is associated with non recoverable faults.

3.1. Passive fault tolerance
Passive fault tolerance is the first FH level [2]. Let

Hy be the faulty hardware and S, be the nominal

software, PFT is associated with the question : “is the
configuration (H f,Sn) valid”? In other terms,

when controlled by the nominal algorithm S, is the
faulty hardware Hy still able to satisfy property P, i.e.,

do we have P(H,,S,)-or P (H £»8y,) if degraded

performances are allowed?
Passive Fault Tolerance: Passive Fault Tolerance

(PFT) is the strategy by which a fault H 518
recovered using the configuration (H 758,). Fault

H , 1s passively tolerated it P(H £5,) holds true.

The system is passively fault tolerant with respect to a
given set of faults F it P(H;,S,) VH,;eHg

where Hp ={H,,f e€F} ie., any fault in the set is

passively tolerated.

Passive Fault Tolerance design: Given a set of
faults F with respect to which property P is wished
to be tolerant, the passive fault tolerance design
problem is therefore

P(H,,S,) (nominal system)

' h
Find 5, such that {‘v’f e F': P(H¢,S,) (faulty system).
Remark 3: (1) PFT is nothing but robustness since
the algorithm S, is able to achieve the desired

property, whatever the system behavior H, or
H; € Hp. (2) Performance degradation may always

be allowed, therefore in the above definitions,
P(H ¢,S,) should write: “P(Hp S,) or P (Hp,S,)

if degraded performances are allowed”. This longer
formulation is implicit here and everywhere in the
sequel. (3) Deciding whether a particular fault f
can be passively tolerated or not needs the behavior
model H ,to be known.

3.2. Active fault tolerance

Active fault tolerance is the second FH level, it is
associated with the question : “is there a configuration
(H,S) that is valid i.e., such that P(/,S)”? The

question admits two variants, according to whether H
is constrained to be Hyor may be different.
Fault Accommodation: Fault Accommodation

(FA) is the strategy by which a fault H, 1s

recovered using a specific configuration (H ;,Sy).

In other words, a fault Hris FA-recoverable it there is
a software S, such that P(H,Sy), 1e., when

controlled by the new algorithm S; the faulty
hardware H , 1s able to satisty property P.

Fault Accommodation design: Given a set of
faults F with respect to which property P is wished to
be tolerant, the FA design problem is

Vf e Ffind S, : P(H ;,S,).

Remark 4: (1) FA can be of interest in both cases
where PFT is possible or not. (2) Deciding whether a
particular fault f is FA-recoverable and, 1if it is,
designing the accommodated control, needs the

behavior model under this fault, H r» 1O be known.

System Reconfiguration: System Reconfiguration
(SR) is the strategy by which a fault H; is recovered

using a configuration (f 5,S) with f ,NH, = .
A fault H, is SR-recoverable if there i1s a
configuration (H 7,5¢) that contains no faulty

constraint and which 1is valid.
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System Reconfiguration design: Given a set of
faults F' with respect to which property P is wished to
be tolerant, the SR design problem is

FOI’fEFﬁnd(ﬁf,Sf), ﬁfﬂHfzgp(ﬁf,Sf)

Remark 5: (1) Obviously, SR can be of interest in
both cases when FA or PFT apply. (2) SR does not

need the model of the faulty hardware H, to be
known, since there is no faulty constraintin 7 ,. (3)

SR can be formulated in a more restrictive way,
namely: “a fault H; is SR-recoverable if there 1s a

valid configuration (f »,S,) that contains no

constraint belonging to a faulty component.”

3.3. Objective reconfiguration

Objective reconfiguration is the third FH level, it 1s
associated with non recoverable faults. In that case,
the question is “is there a configuration (H,S) and a

property P* of interest such that P"(H,S)?

Consistent Objective: An objective P* is
consistent if there exists a configuration (H,S) that

is valid for it.

Objective reconfiguration: Objective reconfigu-
ration (OR) is the strategy by which a non recoverable
fault is handled by changing the current USOM into a
new USOM associated with a consistent objective.

Remark 6: (1) Objective reconfiguration must be
used when non recoverable faults occur, but it may be
of interest even when the fault is recoverable. (2)
There 1s a finite number of objectives the system can
be required to achieve. They are generally pre-
calculated and define the set of the system operating
modes (USOM), for example activating the security
shut-down mode reconfigures the production object-
tive into a emergency stop one. In some cases object-
tives are parameterized, and objective reconfiguration
may be limited to the on-line calculation of new
parameters (as for path replanification in robotics
applications). (3) In a particular fault situation, the
existence of a consistent functional objective is a fault
tolerance issue, while the existence of a consistent
safety objective 1s indeed a safety issue.

Safe system: The system is safe for a given non
recoverable fault Hj; if there exists a consistent
reconfiguration to a safety objective (an emergency
stop, for example).

4. A FAULT TOLERANT ESTIMATION
EXAMPLE

4.1. System description
In order to illustrate the above concepts, consider a

system with 4 unknown variables {x;,..x,} and 5

sensors {yi,...ys}. The state vector x and the

output vector y obey state and output equations

given by
x= f(x,u),
y = g(x).

In closed-loop operation, the control is given by a
control law

u = h(x),
which results in

x= f(x,h(x)), (7)
y = g(x). (3)

Following a classical approach, the estimation
algorithm is built from successive derivations of (8)
where the state derivatives are replaced by their
expression from (7) until the obtained set of
constraints allows the computation of the whole state
[14]. Assume here that this process provides 7

constraints {c,...c;} which link the unknown states

and the derivatives of the known sensor outputs, and
which, by the system hardware architecture, are

associated with 3 components {c,,6,,03} as
follows :

01 <r‘3‘1(x1:x2=-’i3)=0
¢y (x,%4,Y5) =0
( c3(x4,¥5)=0
Gy C4(x1,%2,51) =0 9)
kcs(x?,aj/_zd_’g,) =0
o {% (4,72 73) =0

c7(x4,¥4)=0.

4.2. Objective and valid configurations
Consider a USOM where the objective is to control

x; using an estimate x;. Assume the estimation is

Structural

Analysis is a simple means to identify the different
computation means available to perform this
estimation [16].

Define Level 1 as the set of those variables that can
be directly computed from the sensor signals : there

are three different means to estimate x,; (3 versions)

needed with a specified accuracy a.

3(x4,75) =0 24 =v3(¥s)
¢6(X4,¥ 2 73) =0 25 =76(7 ¥3)

c7(x4,¥4) =0 *‘M’&i =77(V4)

and one single means to estimate x3
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05(X3,J_/2,_)_/3) ZO—)J’(}% 275(529)_)3)9

where v.(.) is the result of solving constraint
¢;(.) =0 with respect to the selected unknown.

Level 2 contains the variables that can be
computed using only sensor outputs and Level 1

variables. At this level, x; can be estimated by

solving ¢, (under 3 versions)

_ 1,23 A123 —
(X, %4,75) =0 = &7 = v2(2477, )

and x, can be estimated by solving ¢,

— 123 o Al23 -
C4(X,%0, Y1) =02 £377 =v4 (277, 7))

Therefore, the 4 variables are observable. However,
the shortest computation paths given above are not the

only ones, indeed x; can also be computed by

solving ¢; provided x; and x, have been estimated
before

c(x1,%2,%3) =0 22 = v,(31,%2)

and x; and x, can be estimated together by solving
the system of equations

-4
— [xL] = Y14 (55%»,51)

C](xlaxZaJ%%) :0
X2

Cq(x,%,¥1) =0

(v;() 18 the solution of the system ¢;()=0,

Table 1. The four possible configurations for the
estimation of x;.

Configuration
components constraints

(H.5),

G1,67

Algorithm

g

55} =Y,(Y3 (fs)s ,}72)

C2,C3

(H,S),

'

G1,03 )212272(1(6()72»}73),)72)

€2,C¢

(H,S)3
61,03 32 =72007(7 ), 75)

9,067

(H.8),

g

01,05 £f=Y14(75(5’_29J73)51)

(1,€4,C5
J

C; (.)=0). Finally there exist 4 configurations that

allow to estimate x;. They are shown in Table 1.

Let a;,i=1,.4 be the precision associated with
i=1,..4,
o <0, <0y <0p <0y, it is concluded that only

estimation versions and assume that

configurations (H,S),,, are valid in the considered
USOM.

4.3. Fault handling
Assuming that (H,S); 1s the configuration

currently in use, let us illustrate the different Fault
Handling concepts.
Fault modes: Any subset of the 7 constraints can

be falsified, therefore there are 27 _1=127 fault
modes. For example, there are 3 fault modes of
component o, (¢ false, ¢, false, both ¢ and

¢, false), 7 fault modes of component o, and 3

fault modes of component o5, giving a total of 13

“single component” fault modes and 114 “multiple
components” fault modes.
Passive Fault Tolerance is associated with the

question “is the current configuration (H,S); still

valid after the fault occurrence”? this is obviously true
as long as the fault mode does not contain constraints

¢5,c3. Therefore, there are 2> —1=31 fault modes

in which the estimation of x; can still be carried on

with the desired accuracy. Note that in order to decide
in real time whether this is the case or not, it 1s needed
not only to detect the fault but also to isolate the faulty
constraints. Note also that if only the fauity
components (instead of the faulty constraints) are
isolated by the FDI algorithm, PFT is known to be
achievable only in 3 fault modes although it is really

achievable in 31 fault modes (indeed, (H,S), is

known to be valid in those cases where component
o3 alone is faulty).

Assume now that a fault mode that affects
constraints ¢, and/or c¢; occurs, and let H = {9,
&3} be the faulty constraints. Fault Accommodation
is associated with the question “is there an estimation
software S such that (A,S) is valid”? it obviously
follows that for the fault &,,55 to be FA-recoverable

it is necessary (but not sufficient) that both constraints

are still invertible, leading to the accommodated

estimation algorithm £{=f2(73(f/5),f2). Note that

in order to decide whether &,,53 are still invertible
and to synthesize the accommodated estimation
algorithm, these faulty constraints must be not only

detected and isolated, but also they must be identified.
A necessary and sufficient condition for the fault to be
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FA-recoverable is that constraints 5,53 are both

invertible and moreover, their inversion allows for the
accuracy specification to hold (for example they are
identified precisely enough). If this condition does not
hold, one must turn to System Reconfiguration. The
question now becomes : “is there a configuration

(H,S) with HNH =@ which is valid? it is easily
seen that (H,S), or (H,S); both answer the

question provided the fault is only on c¢;, otherwise

there is no solution. Note that to answer this question,
only detection and isolation are needed.

Going further with the example, assume that the
FDI algorithm provides only detection and isolation,

and that ¢, is faulty, then there is no means to

recover from the fault, neither by FA (since no fault
model is available) nor by SR (since no healthy

configuration 1s valid). The objective to estimate x;
with accuracy better than a, cannot be achieved,
unless performance degradation is allowed up to a,:

in that case configuration (H,S), can be used.

Otherwise, the objective must be reconfigured by
firing a transition from the current USOM (regulate

x; using its estimate %), to another one where the

estimation 1s not needed, for example enter an idle or
an emergency stop operating mode.

S. FAULT HANDLING PERFORMANCES

Based on the previous concepts, this section
analyzes how the fault handling properties of a system
can be evaluated.

5.1. Fault tolerance

Remember that fault tolerance is defined with
respect to a given property P, an admissible
degradation of P, which is specified by the weaker

property P and a given set of fault modes F':
system X is fault tolerant with respect to the triple

(P,P ,F) ifany fault f e F can be recovered, i.c.,

there exists a configuration - namely (H 759,) for

PFT, (Hf,S;) for FA and (H 5»S7) for SR - that

allows to achieve the - maybe degraded - objective P.
It immediately follows that the only sound way to
evaluate the fault tolerance of a system X for a pair

(P,P ) i1s to measure the set of recoverable faults.
Define #ppr the set of faults that are passively
recoverable, 5, the set of faults that are

recoverable by fault accommodation and .7, the set

of faults that are recoverable by system
reconfiguration. The set of recoverable faults is

A= Sppr U gy U Fep and T is all the more fault

tolerant for the pair (P,P ) as this set is “big”.

This approach obviously needs a measure to be
defined. Defining such a measure is not

straightforward for %57y and .7, since a given

subset of faulty constraints may be recoverable or not,
depending on the value of the parameters in the model

H,, as can be seen from the fault case where

constraints ¢, and/or c¢; are faulty in the above
example : the accommodated estimation algorithm
5&%=72(?3(j75),)72) might be accurate enough only
for some values of the fault parameters, 1.e., only for a
subset of all possible faulty constraints ¢,,¢és.

The definition is much simpler when restricted to
the set 7 since in that case, whatever the value of

the fault parameter associated with a faulty constraint,
this constraint is eliminated from the hardware
configuration (this obviously implies a decrease of the
fault tolerance performance). In the sequel, we
investigate the evaluation of fault tolerance only when
SR strategies are used.

5.1.1 Functional critical faults

At time ¢ the system constraints can be
decomposed into two classes, the healthy ones (index
0) and the faulty ones (index 1)

C=Cy(r) v (1),

where only the constraints in C,(#) are usable by a
software configurations Sy

Functional critical fault: Given a pair (P,P ), a
functional critical fault is a minimal subset of

constraints C < C such that no valid configuration
for this pair exists, whose hardware constraints would

be includedin CC.
Let C,(P,P )={C..C2,..} be the set of all

functional critical faults for the pair (P,P ).

Example 1: In the previous example, assume that
performance degradation is allowed up to o4. Then,

all the 4 versions of the estimation algorithm given by
Table I are admissible. The Boolean expression

(P,P )=cy-c3+cy-cg+cCyc7+cp-cy-cs,

where c¢;.c; (resp. ¢; +c;) are condensed notations
for i (c;)n7p(c;)  (resp. Fy(c) v #p(c;))  ex-
which
configuration for property (P,P ) exists. It follows

presses the conditions under a valid

that the set of functional critical faults is
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EC?‘(P’P*) — {{61962}5{62364}9{623C5}3
1€1,€3,C6,C7$,1C3,C4,C4,C7
{63905566967}}'

(10)

5.1.2 Evaluating the fault tolerance

Using a SR strategy, property (P,P ) 1is fault
tolerant as long as

véizr < écr(Pﬂp_) : Eff;r v C,] (t)

Since (..(P,P ) 1s determined off-line, one can
easily check on-line, when components fail and are
switched-off by the reconfiguration procedure, if the
set Cj(¢) satisfies this condition. Even better, it is

possible to evaluate the “remaining fault tolerance” of
(P,P ), attime ¢, as follows.

Redundancy degrees: The cardinal of each
element of Ei‘r eC,(P,P), k=12,... 1is the
number of constraints whose violation is sufficient to
falsify (P,P ). An evaluation of the remaining fault

tolerance level at time ¢, is therefore given by the
number of components (remember that each
component is associated with a set of constraints)
whose switching-off would lead to a set Cj(¥) such

that :
AC., € Co (PP ):CL. < C(2).

The smallest number of such components is called
“strong redundancy degree”, the largest one is the
“weak redundancy degree” [13,14]. Strong and weak
redundancy degrees evaluate the remaining fault
tolerance by the number of components (respectively
in the “pessimistic” and the “optimistic” case) whose
fault falsifies the expected property. However, more
elaborate indexes can be used, since faults are events
whose probability can be evaluated, provided
reliability data are available.

Reliability and mean time to falsification: The

fault tolerance of property (P,P”) can be evaluated
through its reliability R(C,y(¢),2,T7), which is the
probability for (P,P ) to remain achievable on the
(£, T],
constraints C,(¢) at time . A complementary index
1s MTF(Cy(¥),1), the mean time to the falsification

time interval under initial non-falsified

of property (P,P ), under the initial condition
Cy(?) at time 7.

Example 2: Remember that the 7 constraints in (9)
model a system of 3 interconnected components

{61,0,,03}. Assume that system reconfiguration by

{61,6,.03}
{(Ha S)l s (Hs S)Z » (Ha S)3 (Ha S)4}

1 T

{05,03} {6),03} {61,6,}
{} {(H,S),,(H.S)3} {(H,S), (H,S)4}

I

{o1}
i

o2}
{}

&
U

Fig. 1. Possible configurations and available estima-
tion versions.

switching-off faulty components is the only FT
strategy that is used. Fig. 1 shows for each
configuration of in-service components (identified on
the first line of the box), the set of available versions
of the estimation algorithm of x; (on the second line
of the box). Top-down arrows show configuration
changes that result of switching-off components after
faults, while bottom-up arrows show configuration
changes that result from switching-on the components
again (e.g., after repair).

In this system, the strong redundancy degree is 1,
since the single fault of o; is enough to falsify

(P,P"); the weak redundancy degree is 2 since there

are cases where two components can be faulty before
the estimation becomes impossible. On another hand,
if all three components are assumed to be healthy at
time 0 and their reliabilities are known, the

reliability of the estimation function of x; 1is
computed by:

R({Ul,02,0-3 },O, T) = H[O,T] (01,02,03)

+1o 71(01,03)) 1 = H[o,r](ﬁz)_

1-Tljo r1(03 )

- —

+po 71(01,02)

where H[O,T](a,b,...) is the probability for the

components {a,b,...}, that are healthy at time 0, to
remain healthy during the whole time interval [0,7].

The mean time to falsification, MTF({c,,6,,05},0)
follows using classical computations [14].

5.2. Safety performances

Safety performances can be analyzed in a similar
way to functional performances, by considering only
the case where the current objective must be
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reconfigured to a safety objective.
Safety critical fault: A safety critical fault is a

minimal subset of constraints C < C such that there
is no valid configuration whose hardware constraints

would be included in C\C that allows to achieve
any safety objective.

Although the existence of possible objective
reconfiguration is more difficult to assess than the
existence of valid configurations for the current
objective, the definition of safety critical faults is
merely the same as the definition of functional critical
faults, and therefore the evaluation process 1s
completely similar.

5.3. Fault avoidance

Since both fault tolerance and safety can be
evaluated by using reliability measures, it obviously
follows that an increase in these quantities can be
obtained by a decrease in the probabilities for the
components to be faulty.

Fault avoidance is the strategy by which the
components reliability is increased, either by selecting
top-quality components, or by implementing an
improved maintenance policy.

6. CONCLUSION

This paper has proposed an overview of the
different concepts associated with fault handling in
control systems, in an attempt to draw a clear map
showing the structure and proposing an organization
of this recent field of research. The presentation was
done at the ontological level, by distinguishing
different Fault Tolerance strategies, setting the frame
in which Fault Tolerance, Fault Avoidance, and Fault
Handling complement each other, and analyzing how
these properties can be ascertained and evaluated for a
given design. The ontological level that was presented
does not address the design and optimization of fault
handling procedures from a real time perspective,
whose constraints are also important in practical
application. The problems associated with this point
of view are : how to minimize fault detection and
isolation delays, how to identify quickly and precisely
the model of the faulty system (when needed), how to
minimize the fault handling delays, how to take into
account diagnostic errors, or errors in the application
of the recovery procedures themselves, etc. This quite
impressive list shows that the field still needs a huge
research effort.
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