DOI QR코드

DOI QR Code

The Influence of AlN Buffer Layer Thickness on the Growth of GaN on a Si(111) Substrate with an Ultrathin Al Layer

  • Kwon, Hae-Yong (Department of applied sdences, korea Maritime University) ;
  • Moon, Jin-Young (Department of applied sdences, korea Maritime University) ;
  • Bae, Min-Kun (Basics Science Research Institute, Pukyong National University) ;
  • Yi, Sam-Nyung (Department of Applied Science, Korea Maritime University) ;
  • Shin, Dae-Hyun (Division of Advanced Technology, Korea Research Institute of Standards and Science)
  • Published : 2008.05.31

Abstract

It was studied the effect of a pre-deposited ultrathin Al layer as part of a buffer layer for the growth of GaN. AlN buffer layers were deposited on a Si(111) substrate using an RF sputtering technique, followed by GaN using hydride vapor phase epitaxy (HVPE). Several atomic layers of Al were deposited prior to AlN sputtering and the samples were compared with the others grown without pre-deposition of Al. And it was also studied the influence of AlN buffer layer thickness on the growth of GaN. The peak wavelength of the photoluminescence (PL) was varied with increasing the thickness of the GaN and AlN layers. The optimum thickness of AlN on a Si(111) substrate with an ultrathin Al layer was about $260{\AA}$. Scanning electron microscope (SEM) images showed coalescent surface morphology and X-ray diffraction (XRD) showed a strongly oriented GaN(0002) peak.

Keywords

References

  1. K. H. Lee, J. H. Na, R. A. Taylor, S. N. Yi, S. Birner, Y. S. Park, C. M. Park and T. W. Kang, Appl. Phys. Lett., 89, 023103 (2006). https://doi.org/10.1063/1.2220482
  2. L.Liu, J.H.Edgar, Materials Science and Engineering, R 37, 61 (2002).
  3. N. C. Chen, C. F. Shih, C. A. Chang, A. P. Chiu, S. D. Teng and K. S. Liu, phys. stat. sol.(b), 241, 2698 (2004). https://doi.org/10.1002/pssb.200405016
  4. H. Ishikawa, G. Y. Zhao, N. Nakada, T. Egawa, T. Jinbo and M. Umeno, Jpn. J. Appl. Phys., 38, L492 (1999). https://doi.org/10.1143/JJAP.38.L492
  5. K. H. Kim, H. Kim, M. Yang, H. S. Ahn, S. N. Yi, N. Kameshiro, Y. Honda, M. Yamaguchi and N. Sawaki, J. Korean Phys. Soc., 42, S219 (2003).
  6. S. N. Yi, H. S. Ahn, M. Yang, K. H. Kim, H. Kim, J. Y. Yi, J. H. Chang, H. S. Kim, S. C. Lee and S. W. Kim, J. Korean Phys. Soc., 45, S598 (2004).
  7. X. Ni, L. Zhu, Z. Ye, Z. Zhao, H. Tang, W. Hong, B. Zhao, Surface & Coatings technology, 198, 350 (2005). https://doi.org/10.1016/j.surfcoat.2004.10.073
  8. Y. Lu, X. Liu, X. Wang, D. C. Lu, D. Li, X. Han, G. Cong and Z. Wang, J. Crystal Growth, 263, 4 (2004). https://doi.org/10.1016/j.jcrysgro.2003.11.001
  9. P. W. Yu, C. S. Park, and S. T. Kim, J. Appl. Phys., 89, 1692 (2001). https://doi.org/10.1063/1.1337589
  10. B. S Zhang, M. Wu, X. M. Shen, J. Chen, J. J. Zhu, J. P. Liu, G. Feng, D. G Zhao, Y. T. Wang, and H. Yang, J. Crystal Growth, 258, 34 (2003). https://doi.org/10.1016/S0022-0248(03)01416-7
  11. S. S. Lee, I. S. Seo, K. J. Kim and C. R. Lee, J. Korean Phys. Soc., 45, 1356 (2004).
  12. D. H. Shin, M. K. Bae, S. N. Yi, J. H. Na, A. M. Green, R. A. Taylor, Y. J. Cho, H. M. Cho and S. H. Park, J. Korean Phys. Soc., 48, 1255 (2006).
  13. J. W. Lee, S. H. Jung, H. Y. Shin, I. H. Lee, C. W. Yang, S. H. Lee and J. B. Yoo, J. Crystal Growth, 237, 1094 (2002). https://doi.org/10.1016/S0022-0248(01)02097-8
  14. H. J. Kim, H. S. Paek, and J. B. Yoo, Surface and coatings Technology, 131, 465 (2000). https://doi.org/10.1016/S0257-8972(00)00841-0
  15. S. T. Kim, Y. J. Lee, S. H. Chung and D. C. Moon, J. Korean Phys. Soc., 33, 313 (1998).
  16. Y. Lu, X. Liu, D. C. Lu, H. Yuan, Z. Chen, T. Fan, Y. Li, P. Han, X. Wang, D. Wang, Z. Wang, J. Crystal Growth, 236, 77 (2002). https://doi.org/10.1016/S0022-0248(01)02163-7
  17. H. K. Cho, J. Y. Lee, K. S. Kim and G. M. Yang, J. Korean Phys. Soc., 39, 622 (2001).
  18. K. Kusaka, T. Hanabusa, K. Tominaga, Vacuum , 74, 613 (2004). https://doi.org/10.1016/j.vacuum.2004.01.034
  19. T. Minegishi, T. Suzuki, C. Harada, H. Goto, M. W. Cho, T. Yao, Current Applied Physics, 4, 685 (2004). https://doi.org/10.1016/j.cap.2004.01.040
  20. T. Sasaki, J. Crystal Growth, 129, 81 (1993). https://doi.org/10.1016/0022-0248(93)90436-Z
  21. H. Schulz and K.H.Thiemann, Solid State Commun., 23, 815 (1997).
  22. E. C. Piquette, P. M. Bridger, Z. Z. Bandic, T. C. McGill, J.Vac.Sci.Tech. B, 17, 1241 (1999). https://doi.org/10.1116/1.590730