최신 수중 탄성파 굴절법(USR)을 이용한 호주의 천부해양탐사 사례연구

Case studies of shallow marine investigations in Australia with advanced underwater seismic refraction (USR)

  • 발행 : 2008.02.29

초록

수중 탄성파 굴절법 탐사는 최신 해석 방법들과 함께 호주 연안지역의 천부해양탐사와 지질공학적인 조사에 중요한 기여를 하고 있다. 일련의 사례연구들은 호주의 다양한 지역에서 도하(river crossing)나 항구 기반시설 사업들에 적용된 연속적이고 정적인(static) USR 방법들의 최근 응용들을 보여주고 있다. 시드니에서 수행된 바닥에 설치하는 수신기를 이용한 정적인 USR과 시추공 탄성파 영상은 Land Cove강을 가로지르는 터널공사의 위험을 줄일 수 있는 개선된 지질공학적인 모델들을 개발하는데 도움이 되었다. 멜버른에서는 일반적인 부머(boomer)를 이용한 반사법탐사와 송신원, 수신기를 바닥 근처에 설치한 연속적인 USR의 결과를 결합하여 지하의 다양하게 풍화된 현무암 흐름(flow)에 대해 더 잘 알 수 있었으며, Geelong 항구에서 항로 개선을 위한 준설작업 평가에 도움을 주었다. 연속적인 USR과 넓은 간격을 가지고 설치된 시추공의 정보에 의한 모래(sand)의 품질 평가는 Brisbane 항구의 간척 개발에 이용 가능한 모래 자원의 상업적 결정을 내리는데 도움이 되었다. 호주 연안의 퇴적층에는 낮은 속도의 매질 안에 수평 방향으로 발달이 제한되고, 높은 속도를 가진 덮개층(cap layer)의 특성을 가진 땅속에 묻혀있는 산호초(reef)와 단단한 층들이 존재한다 만약 이러한 특징들을 인식하지 않으면 깊은 곳에 존재하는 굴절면의 심도 결정에 큰 오차를 가져 올 수 있다. Fremantal 부근 앞바다의 제안된 파이프 라인 루트를 따라 얻은 연속적인 USR 자료에 파면 eikonal 토모그라피를 이용한 진보된 굴절파탐사 역산을 적용한 결과 이들 층들과 그 밑에 존재하는 기반암의 굴절면이 정확하게 영상화되었다. 정적인 USR과 위와 동일한 해석 방법이 깊은 Piling을 필요로 하는 새로운 정박 장소로 제안된 서부 호주의 북쪽 지역에서 물속의 퇴적층과 경화층들 밑에 존재하는 화강암 표토를 영상화하는데 사용되었다. 이 결과를 통해 piling을 위해 좀 더 좋은 지역들을 발견할 수 있었으며 전체적인 파일(pile) 길이를 줄일 수 있었다. USR은 경제 성장이 지속되고 더 나은 해석법들의 개발됨에 따라 호주 연안 지역의 천부해양탐사나 지반조사에 많이 쓰일 것으로 예상된다.

Underwater seismic refraction with advanced interpretation approaches makes important contributions to shallow marine exploration and geotechnical investigations in Australia's coastal areas. A series of case studies are presented to demonstrate the recent applications of continuous and static USR methods to river crossing and port infrastructure projects at various sites around Australia. In Sydney, static underwater seismic refraction (USR) with bottom-placed receivers and borehole seismic imaging assisted the development of improved geotechnical models that reduced construction risk for a tunnel crossing of the Lane Cove River. In Melbourne, combining conventional boomer reflection and continuous USR with near-bottom sources and receivers improved the definition of a buried, variably weathered basalt flow and assisted dredging assessment for navigation channel upgrades at Geelong Ports. Sand quality assessment with continuous USR and widely spaced borehole information assisted commercial decisions on available sand resources for the reclamation phase of development at the Port of Brisbane. Buried reefs and indurated layers occur in Australian coastal sediments with the characteristics of laterally limited, high velocity, cap layers within lower velocity materials. If these features are not recognised then significant error in depth determination to deeper refractors can occur. Application of advanced refraction inversion using wavefront eikonal tomography to continuous USR data obtained along the route of a proposed offshore pipeline near Fremantle allowed these layers and the underlying bedrock refractor to be accurately imaged. Static USR and the same interpretation approach was used to image the drowned granitic regolith beneath sediments and indurated layers in the northern area of Western Australia at a proposed new berthing site where deep piling was required. This allowed preferred piling sites to be identified, reducing overall pile lengths. USR can be expected to find increased application to shallow marine exploration and geotechnical investigations in Australia's coastal areas as economic growth continues and improved interpretation methods are developed.

키워드

참고문헌

  1. Anderson, J., and Ringis, J., 1999, Continuous seismic refraction profiling - a major advance in geophysical investigations for port and dredging projects: Proceeding 14th Australian Coastal & Ocean Engineering Conference, April 1999, Perth, Western Australia, 40-45
  2. Bertin, X., and Chaumillon, E., 2005, Newinsights in shallowgas generation from very high resolution seismic and bathymetric surveys in the Marennes-Oleron Bay, France: Marine Geophysical Researches 26, 225-233. doi: 10.1007/s11001-005-3720-y
  3. Caulfield, D. D., Ballard, R., and Leist, R. L., 2005, Analytical techniques for shallow marine near-surface geotechnical parameter estimation, in D. W. Butler, ed, Near Surface Geophysics, Society of Exploration Geophysicists, 707-725
  4. Ferguson, H. F., and Hamel, J. V., 1981, Valley stress relief in flat-lying sedimentary rocks, in Proceeding International Symposium on Weak Rocks, 1235-1240
  5. Johnson D., 2005, Geology of Australia, Cambridge University Press, 288 p
  6. Hamilton, E. L., 1980, Geoacoustic modelling of the sea floor: Journal of the Acoustical Society of America 68, 1313-1340. doi: 10.1121/1.385100
  7. Henderson, A. D., and Cuttler, R. J., 1999, Northside Storage Tunnel Project. Proceeding 10th Aust. Tunnelling Conference, Melbourne, Vic. 21-24 March, 1999, 47-53
  8. Leung, T. M.,Win, M. A.,Walker, C. S., and Whiteley, R. J., 1997, A flexible algorithm for seismic refraction interpretation using program REFRACT in Modern Geophysics in Engineering Geology. Geol. Soc. Engineering. Geol. Spec. Pub. 12, D. M. Eddleston, et al. eds, 399-407
  9. Missiaen, T., Wardell, T., and Dix, J., eds, 2005, Subsurface imaging and sediment characterisation in shallow water environments: Marine Geophysical Researches 26, 83-328 https://doi.org/10.1007/s11001-005-3714-9
  10. Mosher, D. C., and Simpkins, P. G., 1999, Status and trends of marine high-resolution seismic reflection profiling: data acquisition: Geoscience Canada 26, 174-188
  11. Puech, A., Rivoallan, X., and Cherel, L., 2004, The use of surface waves in the characterisation of seabed sediments: development of a MASW system for offshore use. Proceeding Colloque "caracterisation in situ des fonds marins". Seatech Week, Brest, France 21-22(Oct), 1-11
  12. Schuster, G. T., and Quintus-Bosz, A., 1993, Wavepath eikonal traveltime inversion: Geophysics 58, 1314-1323. doi: 10.1190/1.1443514
  13. TTI, 2000, Sydney's Northside StorageTunnel alliance holding upwell under pressure, in Tunnels & Tunnelling International, May 2000, 37-40
  14. Whiteley, R. J., and Greenhalgh, S. A., 1979, Velocity inversion and the shallow seismic refraction method: Geoexploration 17, 125-141. doi: 10.1016/0016-7142(79)90036-X
  15. Whiteley, R. J., 1983, Recent developments in the application of geophysics to geotechnical engineering, in M. C. Ervin, ed., In-situ Testing for Geotechnical Investigations, A. A. Balkema, Rotterdam, 87-110
  16. Whiteley, R. J., 1994, Seismic refraction testing-a tutorial, in Geophysical Characterization of Sites. R. C. Woods, ed., ISSMFE, Tech. Com. 10, New Delhi, India, 45-47
  17. Whiteley, R. J., 2000, Seismic imaging of ground conditions from buried conduits and boreholes: Proceeding Paris 2000 Petrophysics meets Geophysics, Paris, France, 6-8 Nov. 2000 , paper B-15
  18. Whiteley, B., 2002, Integrating geophysical and geotechnical technologies for improved site assessment of ports and harbours. PIANC 2002, Proceeding 30th International Navigation Congress, Sydney, Sept. 2002, 127-139
  19. Whiteley, R. J., 2004, Geotechnical and tunnelling conditions below buried valleys in Sydney, Australia, in Underground space use: analysis of the past and lessons for the future, Erdem and Solak, eds, Taylor and Francis Group, London, 669-673
  20. Whiteley, R. J., 2005, Gravity mapping and seismic imaging of large tunnel routes in Sydney, Australia, in Near SurfaceGeophysics,D.K. Butler, ed., Investigations in Geophysics 13, Soc. Explor. Geophys., Tulsa, 503-512
  21. Whiteley, R. J., 2006, Application of geophysics to underground space development, Proceeding 10th IAEG Congress, Nottingham, 6-10 Sept. 2006, Geol. Soc. Of London, Paper 603, 1-7
  22. Whiteley, R. J., Ameratunga, J., and Boyle, P. J., 2005, Assessment of sand quality using seismic techniques at Fisherman Islands, Brisbane. Proceeding 1st International Symposium on Frontiers in Offshore Geotechnics ISFOG, Gourvenec and Cassidy, eds, Taylor & Francis Group, London
  23. Whiteley, R. J., and Hawkins, L.V., 2005, Short Note: early seismic refraction and gravity exploration over the MVT lead-zinc deposit, Western Australia: Exploration Geophysics 36, 407-409. doi: 10.1071/EG05407
  24. Whiteley, R. J., and Eccleston, P. J., 2006, Comparison of shallow seismic refraction interpretation methods for regolith mapping: Exploration Geophysics 37, 340-347. doi: 10.1071/EG06340