지형을 고려한 주파수 영역 가중평균 유한요소법 탄성파 모델링

Elastic Wave Modeling Including Surface Topography Using a Weighted-Averaging Finite Element Method in Frequency Domain

  • 최지향 (서울대학교 에너지시스템공학부) ;
  • 남명진 (한국지질자원연구원 지하수지열연구부) ;
  • 민동주 (서울대학교 에너지시스템공학부) ;
  • 신창수 (서울대학교 에너지시스템공학부) ;
  • 서정희 (서울대학교 지구환경시스템공학부)
  • Choi, Ji-Hyang (Dept. of Energy System Eng., Seoul National University) ;
  • Nam, Myung-Jin (Dept. of Petroleum and Geosystems Eng., The University of Texas at Austin, Groundwater and Geothermal Div., Korea Institute of Geoscience and Mineral Resources) ;
  • Min, Dong-Joo (Dept. of Energy System Eng., Seoul National University) ;
  • Shin, Chang-Soo (Dept. of Energy System Eng., Seoul National University) ;
  • Suh, Jung-Hee (Dept. of Civil, Urban and Geosystem Eng., Seoul National University)
  • 발행 : 2008.05.31

초록

실제 육상 탄성파 탐사는 불규칙한 지표 지형이 있는 탄성 매질에서 수행되며, 이 경우 지표의 불규칙한 특성이 파의 전파에 영향을 미치게 된다. 지형을 고려한 탄성파 전파특성을 규명하기 위해서 주파수 영역 가중평균 유한요소법을 이용한 2차원 탄성파 모델링을 연구하였다. 먼저 지표 굴곡이 없는 균질 반무한 공간에 대해 지표 위에 공기층이 있는 경우와 없는 경우를 비교해서 공기층의 존재가 계산 결과에 미치는 영향을 확인하였다. 불규칙 지표를 포함하는 모형에 가중평균 유한요소법을 적용할 경우 일반적인 유한요소법의 경우에 비해 격자 개수를 적게 설정할 수 있어 계산시간을 절약할 수 있고 수치 계산 주시에도 큰 차이가 없음을 확인하였다. 지표면에 경사면과 계단 형태의 불규칙 지형이 있는 균질 모형에 대한 탄성파 거동을 살펴보면 불규칙 지표면의 모서리에서 새로운 송신원이 존재하는 것과 같은 효과가 나타나는 것과 레일리파가 불규칙 지표에서 더 커지는 것을 확인할 수 있었다.

Abstract: Surface topography has a significant influence on seismic wave propagation in a reflection seismic exploration. Effects of surface topography on two-dimensional elastic wave propagation are investigated through modeling using a weighted-averaging (WA) finite-element method (FEM), which is computationally more efficient than conventional FEM. Effects of air layer on wave propagation are also investigated using flat surface models with and without air. To validate our scheme in modeling including topography, we compare WA FEM results for irregular topographic models against those derived from conventional FEM using one set of rectangular elements. For the irregular surface topography models, elastic wave propagation is simulated to show that breaks in slope act as a new source for diffracted waves, and that Rayleigh waves are more seriously distorted by surface topography than P-waves.

키워드

참고문헌

  1. Baba, K., and Seama, N., 2002, A new technique for the incorporation of seafloor topography in electromagnetic modeling, Geophys. J. Int., 150, 392-402 https://doi.org/10.1046/j.1365-246X.2002.01673.x
  2. Davis, T. A., 1997, UMFPACK Version 2.2 Quick Start Guide, /www.cise.ufl.edu/research/sparce/umfpack
  3. Hirsch, C., 1988, Numerical computation of internal and external flows, John Wiley & Sons, Inc
  4. Lysmer, J., and Drake, L. A., 1972, A finite element method for seismology: method in computational physic, Academic Press
  5. Marfurt, K. J., 1984, Accuracy of finite-difference and finiteelement modeling of the scalar and elastic wave equations, Geophysics, 49, 533-549 https://doi.org/10.1190/1.1441689
  6. Min, D.-J., Shin, C., Prett, R. G., and Yoo, H. S., 2003, Weighted-averaging finite-element method for 2D Elastic Wave Equations in the frequency domain, Bulletin of Seismological Society of America, 93, 904-921 https://doi.org/10.1785/0120020066
  7. Pilant, W. L., 1979, Elastic waves in the earth, Elsevier Scientific
  8. Stekl, I., and Pratt, R. G., 1999, Accurate viscoelastic modeling by frequency-domain finite difference using rotated operators, Geophysics, 64, 1779-1794
  9. Tessmer, E., and Kosloff, D., 1994, 3-D elastic modeling with surface topography by a Chevychev spectral method, Geophysics, 59, 464-473 https://doi.org/10.1190/1.1443608
  10. Virieux, J., 1986, P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method, Geophysics, 51, 889-901 https://doi.org/10.1190/1.1442147
  11. Zhang, J., and Verschuur, D. J., 2002, Elastic wave propagation in heterogeneous anisotropic media using the lumped finiteelement method, Geophysics, 67, 625-638 https://doi.org/10.1190/1.1468624