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PSEUDO-BCI ALGEBRAS

Wies law A. Dudek and Young Bae Jun∗

Abstract. As a generalization of BCI-algebras, the notion of pseudo-
BCI algebras is introduced, and some of their properties are investigated.

Characterizations of pseudo-BCI algebras are established. Some condi-
tions for a pseudo-BCI algebra to be a pseudo-BCK algebra are given.

1. Introduction

In [1], G. Georgescu and A. Iorgulescu introduced the notion of pseudo-BCK
algebras as an extension of BCK-algebras. In this paper, we introduce the no-
tion of pseudo-BCI algebras as an extension of BCI-algebras, and investigate
some properties.

2. Preliminaries

Recall that a BCI-algebra is an algebra (X, ∗, 0) of type (2,0) satisfying the
following axioms: for every x, y, z ∈ X,

• ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,
• (x ∗ (x ∗ y)) ∗ y = 0,
• x ∗ x = 0,
• x ∗ y = 0 and y ∗ x = 0 imply x = y.

For any BCI-algebra X, the relation ≤ defined by x ≤ y if and only if x∗y = 0
is a partial order on X.

3. Pseudo-BCI algebras

Definition 3.1. A pseudo-BCI algebra is a structure X = (X,≤, ∗, ⋄, 0), where
“≤” is a binary relation on a set X, “∗” and “⋄” are binary operations on X
and “0” is an element of X, verifying the axioms: for all x, y, z ∈ X,

(a1) (x ∗ y) ⋄ (x ∗ z) ≤ z ∗ y, (x ⋄ y) ∗ (x ⋄ z) ≤ z ⋄ y,
(a2) x ∗ (x ⋄ y) ≤ y, x ⋄ (x ∗ y) ≤ y,
(a3) x ≤ x,
(a4) x ≤ y, y ≤ x =⇒ x = y,
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(a5) x ≤ y ⇐⇒ x ∗ y = 0 ⇐⇒ x ⋄ y = 0.

Note that every pseudo-BCI algebra satisfying x ∗ y = x ⋄ y for all x, y ∈ X
is a BCI-algebra. Every pseudo-BCK algebra is a pseudo-BCI algebra.

Proposition 3.2. In a pseudo-BCI algebra X the following holds:
(b1) x ≤ 0 ⇒ x = 0.
(b2) x ≤ y ⇒ z ∗ y ≤ z ∗ x, z ⋄ y ≤ z ⋄ x.
(b3) x ≤ y, y ≤ z ⇒ x ≤ z.
(b4) (x ∗ y) ⋄ z = (x ⋄ z) ∗ y.
(b5) x ∗ y ≤ z ⇔ x ⋄ z ≤ y.
(b6) (x ∗ y) ∗ (z ∗ y) ≤ x ∗ z, (x ⋄ y) ⋄ (z ⋄ y) ≤ x ⋄ z.
(b7) x ≤ y ⇒ x ∗ z ≤ y ∗ z, x ⋄ z ≤ y ⋄ z.
(b8) x ∗ 0 = x = x ⋄ 0.
(b9) x ∗

(
x ⋄ (x ∗ y)

)
= x ∗ y and x ⋄

(
x ∗ (x ⋄ y)

)
= x ⋄ y.

Proof. (b1) If x ≤ 0, then 0 ⋄ x = (x ∗ 0) ⋄ x =
(
x ∗ (x ⋄ x)

)
⋄ x = 0, that is,

0 ≤ x. Hence x = 0 by (a6).
(b2) Let x, y ∈ X be such that x ≤ y. Then (z ∗ y) ⋄ (z ∗ x) ≤ x ∗ y = 0, and

so (z ∗ y) ⋄ (z ∗ x) = 0 by (b1). Therefore z ∗ y ≤ z ∗ x. Now

(z ⋄ y) ∗ (z ⋄ x) ≤ x ⋄ y = 0,

and thus (z ⋄ y) ∗ (z ⋄ x) = 0 by (b1). This implies that z ⋄ y ≤ z ⋄ x.
(b3) Let x, y, z ∈ X be such that x ≤ y and y ≤ z. Then x ∗ z ≤ x ∗ y = 0,

which implies that x ∗ z = 0, that is, x ≤ z.
(b4) Since x ∗ (x ⋄ z) ≤ z by (a2), it follows from (b2) and (a1) that

(x ∗ y) ⋄ z ≤ (x ∗ y) ⋄
(
x ∗ (x ⋄ z)

)
≤ (x ⋄ z) ∗ y.

Also since x ⋄ (x ∗ y) ≤ y, we have

(x ⋄ z) ∗ y ≤ (x ⋄ z) ∗
(
x ⋄ (x ∗ y)

)
≤ (x ∗ y) ⋄ z

by (b2) and (a1). Hence, by (a4), we get (x ∗ y) ⋄ z = (x ⋄ z) ∗ y.
(b5) If x∗y ≤ z, then 0 = (x∗y)⋄z = (x⋄z)∗y, and so x⋄z ≤ y. Conversely,

if x ⋄ z ≤ y, then 0 = (x ⋄ z) ∗ y = (x ∗ y) ⋄ z. Hence x ∗ y ≤ z.
(b6) is by (a1) and (b5).
(b7) Let x, y ∈ X be such that x ≤ y. Using (b6), we have

(x ∗ z) ∗ (y ∗ z) ≤ x ∗ y = 0 and (x ⋄ z) ⋄ (y ⋄ z) ≤ x ⋄ y = 0.

It follows from (b1) that (x ∗ z) ∗ (y ∗ z) = 0 and (x ⋄ z) ⋄ (y ⋄ z) = 0, that is,
x ∗ z ≤ y ∗ z and x ⋄ z ≤ y ⋄ z.

(b8) Putting y = 0 in (a2), we have x ∗ (x ⋄ 0) ≤ 0 and x ⋄ (x ∗ 0) ≤ 0. It
follows from (b1) that x ∗ (x ⋄ 0) = 0 and x ⋄ (x ∗ 0) = 0, so that x ≤ x ⋄ 0 and
x ≤ x ∗ 0. On the other hand,

(x ⋄ 0) ∗ x = (x ∗ x) ⋄ 0 = 0 ⋄ 0 = 0 and (x ∗ 0) ⋄ x = (x ⋄ x) ∗ 0 = 0 ∗ 0 = 0,

and so x ⋄ 0 ≤ x and x ∗ 0 ≤ x. By (a4), x ∗ 0 = x = x ⋄ 0.
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(b9) By (a2), x ∗
(
x ⋄ (x ∗ y)

)
≤ x ∗ y and x ⋄

(
x ∗ (x ⋄ y)

)
≤ x ⋄ y. On the

other hand,

(x ∗ y) ⋄
(
x ∗ (x ⋄ (x ∗ y))

)
≤

(
x ⋄ (x ∗ y)

)
∗ y = (x ∗ y) ⋄ (x ∗ y) = 0

and

(x ⋄ y) ∗
(
x ⋄ (x ∗ (x ⋄ y))

)
≤

(
x ∗ (x ⋄ y)

)
⋄ y = (x ⋄ y) ∗ (x ⋄ y) = 0.

It follows from (b1) that

(x ∗ y) ⋄
(
x ∗ (x ⋄ (x ∗ y))

)
= 0 and (x ⋄ y) ∗

(
x ⋄ (x ∗ (x ⋄ y))

)
= 0,

that is, x ∗ y ≤ x ∗
(
x ⋄ (x ∗ y)

)
and x ⋄ y ≤ x ⋄

(
x ∗ (x ⋄ y)

)
. Hence (b9) is valid

by (a4). ¤

We now give a characterization of a pseudo-BCI algebra.

Theorem 3.3. A structure X = (X,≤, ∗, ⋄, 0) is a pseudo-BCI algebra if and
only if it satisfies (a1), (a4), (a5) and (b8).

Proof. The necessity is obvious. Assume that X satisfies (a1), (a4), (a5) and
(b8). Substituting 0 for y and z in (a1) and using (b8), we have x ⋄ x ≤ 0 and
x ∗ x ≤ 0. It follows from (b8) that

x ⋄ x = (x ⋄ x) ∗ 0 = 0 and x ∗ x = (x ∗ x) ⋄ 0 = 0,

so that x ≤ x. Putting y = 0 in (a1) and using (b8), we get

x ⋄ (x ∗ z) = (x ∗ 0) ⋄ (x ∗ z) ≤ z ∗ 0 = z

and
x ∗ (x ⋄ z) = (x ⋄ 0) ∗ (x ⋄ z) ≤ z ⋄ 0 = z.

This completes the proof. ¤

Definition 3.4. By a pseudo-BCI subalgebra of a pseudo-BCI algebra X, we
mean a subset S of X which satisfies x ∗ y ∈ S and x ⋄ y ∈ S for all x, y ∈ S.

Theorem 3.5. For any pseudo-BCI algebra X the set

K(X) := {x ∈ X | 0 ≤ x}

is a pseudo-BCI subalgebra of X, and so a pseudo-BCK algebra.

Proof. Let x, y ∈ K(X). Then 0 ≤ x and 0 ≤ y. It follows from (a5) and
(b7) that 0 = 0 ∗ y ≤ x ∗ y and 0 = 0 ⋄ y ≤ x ⋄ y so that x ∗ y ∈ K(X) and
x ⋄ y ∈ K(X). Hence K(X) is a pseudo-BCI subalgebra of X. ¤

Theorem 3.6. If a pseudo-BCI algebra X satisfies

x ⋄ (x ∗ y) = y ⋄ (y ∗ x) and x ∗ (x ⋄ y) = y ∗ (y ⋄ x)

for all x, y ∈ X, then X is a pseudo-BCK algebra.
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Proof. Let X be a pseudo-BCI algebra such that

x ⋄ (x ∗ y) = y ⋄ (y ∗ x) and x ∗ (x ⋄ y) = y ∗ (y ⋄ x)

for all x, y ∈ X. We first claim that x ∗ a /∈ K(X) and y ⋄ b /∈ K(X) for all
x, y ∈ K(X) and a, b ∈ X \ K(X). Indeed, if x ∗ a ∈ K(X) and y ⋄ b ∈ K(X)
for some x, y ∈ K(X) and a, b ∈ X \ K(X), then x ⋄ (x ∗ a) ∈ K(X) and
y ∗ (y ⋄ b) ∈ K(X). Hence 0 ≤ x ⋄ (x ∗ a) ≤ a and 0 ≤ y ∗ (y ⋄ b) ≤ b. It follows
that 0 ≤ a and 0 ≤ b so that a, b ∈ K(X). This is a contradiction. Assume
that X ̸= K(X). Then there exists a ∈ X \ K(X), and so

0 ∗ (0 ⋄ a) = a ∗ (a ⋄ 0) = a ∗ a = 0

and
0 ⋄ (0 ∗ a) = a ⋄ (a ∗ 0) = a ⋄ a = 0.

Thus 0 ≤ 0 ∗ a and 0 ≤ 0 ⋄ a, that is, 0 ∗ a ∈ K(X) and 0 ⋄ a ∈ K(X). This is
a contradiction, and consequently X = K(X). Therefore X is a pseudo-BCK
algebra. ¤
Theorem 3.7. If a pseudo-BCI algebra X satisfies

(1) (x ∗ y) ⋄ y = x ⋄ y and (x ⋄ y) ∗ y = x ∗ y

for all x, y ∈ X, then X is a pseudo-BCK algebra.

Proof. Let x = y in (1). Then 0 ⋄ x = (x ∗ x) ⋄ x = x ⋄ x = 0 and 0 ∗ x =
(x ⋄ x) ∗ x = x ∗ x = 0, that is, 0 ≤ x for all x ∈ X. Hence X = K(X), and so
X is a pseudo-BCK algebra. ¤
Theorem 3.8. If a pseudo-BCI algebra X satisfies

(2) x ∗ (y ⋄ x) = x and x ⋄ (y ∗ x) = x

for all x, y ∈ X, then X is a pseudo-BCK algebra.

Proof. Putting x = 0 in (2), then 0 = 0∗(y⋄0) = 0∗y and 0 = 0⋄(y∗0) = 0⋄y for
any y ∈ X. It follows that X = K(X) so that X is a pseudo-BCK algebra. ¤
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