DOI QR코드

DOI QR Code

A general approach for studying the motion of a cantilever beam interacting with a 2D fluid flow

  • Received : 2008.04.08
  • Accepted : 2008.11.24
  • Published : 2008.12.25

Abstract

In this paper a general approach for studying the motion of a cantilever beam interacting with a 2D fluid flow is presented. The fluid is solved by a general purpose commercial computational fluid dynamics (CFD) package (FLUENT 6.2), while the structure is managed by means of a dedicated finite element method solver, coded in FLUENT as a user-defined function (UDF). A weak fluid structure interaction coupling scheme is adopted exchanging information at the end of each time step. An arbitrary cantilever beam can be introduced in the CFD mesh with its wetted boundaries specified; the cantilever can also interact with specified rigid and flexible walls through use of a non-linear contact algorithm. After a brief review of relevant scientific contributions, some test cases and application examples are presented.

Keywords

References

  1. Baudille, R. and Biancolini, M. E. (2002), "Dynamic analysis of a two stroke engine reed valve", Proceedings on CD-ROM of XXXI AIAS Conference, Parma, Italy. (available on-line in Italian http://www.pcm.unifi.it/Aias/ XXXI_CONVEGNO/CD_ATTI/PDF/149.pdf).
  2. Baudille, R. and Biancolini, M. E. (2005), "Modelling FSI problems in FLUENT: a dedicated approach by means of UDF programming", Proceedings on CD-ROM of the European Automotive CFD Conference, Frankfurt, Germany.
  3. Blakely, K. (1993), MSC/Nastran v68 Basic Dynamic Analysis guide. MSC Corp.
  4. Chang, Y. B. and Moretti, P. M. (2002), "Flow-induced vibration of free edges of thin films", J. Fluids Struct., 16(7), 989-1008. https://doi.org/10.1006/jfls.2002.0456
  5. Comsol Inc., "Fluid-structure interaction example of multiphisics application", Femlab internet site, 2004.
  6. Fitt, A. D. and Pope, M. P. (2001), "The unsteady motion of two-dimensional flags with bending stiffness", J. Eng. Mathematics, 40(3), 227-248. https://doi.org/10.1023/A:1017595632666
  7. Fleck, R., Blair, G. P. and Houston, R. A. R. (1987), "An improved model for predicting reed valve behaviour in two-stroke cycle engines", SAE Paper no. 871654.
  8. Genevaux, J. M. and Bernardin, D. (1996), "The lattice gas method and interaction with an elastic solid", J. Fluids Struct., 10, 873-892. https://doi.org/10.1006/jfls.1996.0057
  9. Hubner, B., Walhorn, E. and Dinkler, D. (2002), "Space-time finite elements for fluid-structure interaction", Proceedings in Applied Mathematics and Mechanics, 1(1), 81-82. https://doi.org/10.1002/1617-7061(200203)1:1<81::AID-PAMM81>3.0.CO;2-1
  10. Hubner, B., Walhorn, E. and Dinkler, D. (2004), "A monolithic approach to fluid-structure interaction using space-time finite elements", Comput. Methods Appl. Mech. Eng., 193, 2087-2104. https://doi.org/10.1016/j.cma.2004.01.024
  11. Jahromi, H. Z., Izzuddin, B. A. and Zdravkovic, L. (2008), "Partitioned analysis of nonlinear soil-structure interaction using iterative coupling", Interaction and Multiscale Mechanics, An Int. J., 1(1), 33-51. https://doi.org/10.12989/imm.2008.1.1.033
  12. Kampchen, M., Dafnis, A., Reimerdes, H. G., Britten, G. and Ballmann, J. (2004), "Dynamic aero-structural response of an elastic wing model", J. Fluids Struct., 18, 63-77.
  13. Kolke, A., Hubner, B., Walhorn, E. and Dinkler, D. (2004), "Strongly coupled analysis of fluid-structure interaction with two-fluid flows", Proceedings on CD-ROM of the European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS 2004, Jyvaskyla, Finland. (available on-line http:// www.mit.jyu.fi/eccomas2004/proceedings/pdf/28.pdf).
  14. Matthies, H. G. and Steindorf, J. (2003), "Partitioned strong coupling algorithms for fluid-structure-interaction", Comput. Struct., 81(8-11), 805-812. https://doi.org/10.1016/S0045-7949(02)00409-1
  15. Meirovitch, L. (1986), Elements of Vibration Analysis, McGraw Hill, New York.
  16. Mollendorf, J. C., Felske, J. D., Samimy, S. and Pendergast, D. R. (2003), "A fluid/solid model for predicting slender body deflection in a moving fluid", J. Appl. Mech., 70(1), 346-350. https://doi.org/10.1115/1.1554416
  17. Stein, K., Tezduyar, T., Kumar, V., Sathe, S., Benney, R., Thornburg, E., Kyle, C. and Nonoshita, T. (2003), "Aerodynamic interactions between parachute canopies", J. Appl. Mech., 70(1), 50-57. https://doi.org/10.1115/1.1530634
  18. Tang, D. M., Yamamoto, H., H. Dowell, E. (2003), "Flutter and limit cycle oscillations of two-dimensional panels in three-dimensional axial flow", J. Fluids Struct., 17(2) 225-242.
  19. Tarnopolsky, A. Z., Fletcher, N. H. and Lai, J. C. S. (2000), "Oscillating reed valves-an experimental study", J. Acoustical Society of America, 108(1), 400-406. https://doi.org/10.1121/1.429473
  20. Vairo, G. (2003), "A numerical model for wind loads simulation on long-span bridges", Simulation Modelling Practice & Theory, 11(5-6), 315-351. https://doi.org/10.1016/S1569-190X(03)00053-4
  21. Wall, W. A. and Ramm, E. (1998), "Fluid-structure interaction based upon a stabilized (ALE) finite element method in computational mechanics - New trends and applications", Proceedings on CD-ROM of the 4th World Congress on Computational Mechanics (WCCM IV), Idelsohn SR, Onate E, Dvorkin EN (eds) CIMNE, Barcelona.
  22. Wall, W. A. and Ramm, E. (2004), "Shell structures - a sensitive interrelation between physics and numerics", Int. J. Numer. Methods Eng., 60, 381-427. https://doi.org/10.1002/nme.967

Cited by

  1. Compact hybrid electrohydraulic actuators using smart materials: A review vol.23, pp.6, 2012, https://doi.org/10.1177/1045389X11418862
  2. Geometrically Non-Linear Vibration of a Cantilever Interacting with Rarefied Gas Flow vol.20, pp.6, 2008, https://doi.org/10.2478/cait-2020-0067